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§1 December 1st, 2022
This is a subfile package test.

§1.1 Symmetry groups
I will assume knowledge of permutation groups and the definition of a group
action. We denote the group of all permutations of {1, 2, . . . , n} as Sn.

Recall that groups are (1,2) closed under an associative binary operation, (3)
each element has an inverse, and (4) the group has an indentity. Composition of
permutations is read right to left; g ◦ f means do f first, then g.

Example 1.1 (Permutation groups). Here are the two simplest permutation groups.

1. Cn = 〈ρn〉 is a cyclic permutation group, if ρn is a symmetrical rotation of
360◦/n degrees.

2. The dihedral permutation group Dn = 〈ρn〉 ∪ {τ1, . . . , τn} consists of all
rotations and reflections of an n-gon is a group.

§1.2 Colorings
Let c = (c(1), c(2), . . . c(n)) be a coloring of {1, 2, . . . , n}. Given a permutation

f =

(
1 2 · · · n
i1 i2 · · · in

)
∈ Sn.

f ∗ c is the coloring of f , and is defined as

(f ∗ c)(ik) := c(k), k ∈ {1, 2, . . . , n} .

or
(f ∗ c)(l) = c(f−1(l)).

Definition 1.2. The set of colorings (C) requires the property that for all
f ∈ G ≤ Sn, and for all c ∈ C, f ∗ c ∈ C.

We note that for f, g ∈ Sn,

(fg) ∗ c = (g ◦ f) ∗ c = g ∗ (f ∗ c),

as is expected of group actions.

Definition 1.3. Two colorings c1 and c2 are equivalent if ∃f ∈ G s.t.

f ∗ c1 = c2.

We can show that c1 ∼ c2 as defined before is an equivalence relation.
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§1.3 Burnside’s Lemma
Definition 1.4. Given a permutation group G and a set of colorings C, the
stabilizer is

G(c) := {f : f ∈ G, f ∗ c = c} .

the fixed points by f ∈ G are

C(f) := {c : c ∈ C, f ∗ c = c} .

Proposition 1.5
G(c) is a group, and g ∗ c = f ∗ c ⇐⇒ f−1 ◦ g ∈ G(c).

Proof. Proving G(c) is a group is omitted. Assume that g ∗ c = f ∗ c, this is true
iff

(f−1 ◦ g) ∗ c = f−1 ∗ (g ∗ c) = f−1 ∗ (f ∗ c) = (f−1 ◦ f) ∗ c = 1 ∗ c = c.

Thus f−1 ◦ g does not change c,

⇐⇒ f−1 ◦ g ∈ G(c).

Corollary 1.6

|{f ∗ c : f ∈ G}| = |G|
|G(c)|

.

Proof. The permutations g that satisfy g ∗ c = f ∗ c are the permutations in
H = {f ◦ h : h ∈ G(c)}.

Since f ◦ h = f ◦ h′ =⇒ h = h′, the number of permutations of H

|{f ◦ h : h ∈ G(c)}| = |G|
|G(c)|

.

Theorem 1.7 (Burnside’s Lemma)
Let G be a group of permutations of a set X, and let C be the set of colorings
of X s.t. f ∗ c ∈ C ∀f ∈ G, c ∈ C. the number of non-equivalent colorings in
C (denoted N(G, C)) is

N(G, C) = 1

|G|
∑
f∈G

|C(f)| .
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Proof. We count the number of pairs (f, c) such that f ∗ c = c. One way to get
this value is ∑

f∈G
|C(f)| .

This is equivalent looking at each c and finding all permutations such that
f ∗ c = c.

Therefore ∑
f∈G

|C(f)| =
∑
c∈C

|G(c)| .

From the last corollary,∑
c∈C

|G(c)| = |G|
∑
c∈C

1

colorings equivalent to c
= |G| ·N(G, C)

The RHS results from the contribution of every equivalence class being 1. Thus

N(G, C) = 1

|G|
∑
f∈G

|C(f)| .

§1.4 Applications of Burnside’s lemma

Example 1.8 (Circular permutations). How many ways are there to arrange n distinct
objects in a circle?

Consider the permutation group Cn = 〈ρn〉, where ρn is a 360◦/n rotation. Let
C be the n! ways to color the n corners. We use Burnside’s lemma to get

N(Cn, C) =
1

n
(n! + 0 + 0 + · · ·+ 0) = (n− 1)!

Example 1.9 (Necklace beads). How many ways are there to arrange n ≥ 3 differently
colored beads into a necklace?

Instead we have the permutation group Dn = 〈ρn, τ〉,

N(Dn, C) =
1

2n
(n! + 0 + · · ·+ 0) =

(n− 1)!

2
.

Example 1.10 (Infinite multiset). Consider S = {∞ · r,∞ · b,∞ · g,∞ · y}. How
many n permutations are there if we consider a left-to-right reading the same as a
right-to-left one.

This has the group G = {1, τ}, where 1 is the identity and

τ =

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

Considering odd and even values of n, we find that

|C(τ)| = 4

⌊
n+1
2

⌋
.
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By Burnside’s lemma,

N(G, C) = 4n + 4

⌊
n+1
2

⌋
2

.

§2 December 4th, 2022
§2.1 Cycle factorization

Example 2.1 (Factorizing f ∈ S8).

f =

(
1 2 3 4 5 6 7 8
6 8 5 4 1 3 2 7

)
= [1, 6, 3, 5] ◦ [2, 8, 7] ◦ [4].

This is because when we plug in 1, we go to 6, then if we plug in 6, we go to 3, and
then to 5, and back to 1.

Every f ∈ Sn can be written as the product of cycles. In an abstract algebra
class, we may exclude the trivial cycles like the [4] in the example above. However,
they will prove to be useful later, so we keep them.

For notation let #(f) for f ∈ Sn be the number of cycles in the cycle factor-
ization of f .

Theorem 2.2
For f ∈ Sn for a set X, if we have k colors and want to find the number of
fixed colorings under f , then it is given by

|C(f)| = k#(f)

This is because every element in a cycle becomes dependent on each other, so
each cycle can only be colored 1 color if it is to be fixed by the permutation.

§2.2 Cycle generating function
We want to find a way of getting the number of each cycles for a permutation.
Let f ∈ Sn be a permutation of X. If it has e1 1-cycles, e2 2-cycles, …, and en
n-cycles, then

n∑
i=1

i · ei = n.

Definition 2.3. Call the n-tuple (e1, e2, . . . , en) the type of f , denoted

type(f) := (e1, e2, . . . , en).

Note that

#(f) =

n∑
i=1

ei.

To distinguish different permutations of the same type, we introduce n indeter-
minates z1, . . . , zn, where zk corresponds to a k-cycle (k = 1, 2, . . . , n).
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Definition 2.4. For f with type(f) = (e1, . . . , en) the monomial of f is

mon(f) := ze11 ze22 · · · zenn =
n∏

i=1

zeii .

Definition 2.5. The cycle index of G is

PG(z1, z2, . . . , zn) :=
1

|G|
∑
f∈G

mon(f).

Example 2.6 (Cycle index). The cycle index of D4 is

PD4
(z1, z2, z3, z4) =

1

8
(z41 + 2z4 + 3z22 + 2z21z2).

To apply this polynomial to getting the number of each cycle,

Theorem 2.7
Let |X| = n with k colors, and C is the set of all kn colorings of X. Let G
be a permutation group of X. Then

N(G, C) = PG(k, k, . . . , k).

Proof. Apply Burnside’s lemma and previous theorems.

§3 December 9th, 2022
§3.1 Fixed amount of colors
We already know how to solve the following example:

Example 3.1. How many nonequivalent colorings are there of the corners of a regular
5-gon in which there corners are colored red and two are colored blue?

Proof. For the identity, there are 10 fixed colorings. None are fixed for rotations,
and 2 fixed for each reflection. By Burnside’s theorem, the number of colorings is
2.

We seek to find a way to solve the general problem. Consider only having two
colors. Let Cp,q be the set of colorings of X with p red, q blue, and p + q = n
total.

Suppose ti i-cycles get assigned red for 1 ≤ i ≤ n. For the number of red
elements to be p, we need

p =
n∑

i=1

ti · i.
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A solution to this satisfies

0 ≤ ti ≤ ei, for 1 ≤ i ≤ n,

times (
e1
t1

)
· · ·

(
en
tn

)
.

We find that the number of nonequivalent colorings can be found by the monomial
of f by considering the coefficient of rpbq in

(r + b)e1 · · · (rn + bn)en .

Hence the number of nonequivalent colorings with red and blue is

PG(r + b, r2 + b2, . . . , rn + bn).

§3.2 Pólya’s theorem

Theorem 3.2 (Pólya’s theorem)
Let X be a set, G be a permutation group on X and {u1, . . . , uk} be a set
of colors. Let C be the set of all colorings of X. The generating function
for the number of nonequivalent colorings of C according to the number of
colors is

PG(u1 + · · ·+ uk, u
2
1 + · · ·+ u2k, . . . , u

n
1 + · · ·+ unk).

The coefficient of up11 · · ·upkk is the number of nonequivalent colorings in C
with pi elements colored ui for 1 ≤ i ≤ k.

If we let ui = 1 for all i, then the equation matches with the lighter case from
before,

PG(k, k, . . . , k).

Indeed, the sum is over all possible colorings of X with no limits on k colors.

Example 3.3. Calculate the generating function for the number of nonequivalent
colorings of the corners of a square with two colors and three colors.

Proof. We found that

PD4 =
1

8
(z41 + 2z4 + 3z22 + 2z21z2)

For two colors r, d,, the generating function can be calculated to

PD4
(r + b, r2 + b2, r3 + b3, r4 + b4) = r4 + r3b+ 2r2b2 + rb3 + b4.

There are 6 nonequivalent colorings. Similarly, we can calculate PD4 with ri + bi +
gi.
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Example 3.4 (Coloring faces and corners of a cube). The symmetry group of a cube
consists of

1. The indentity rotation with corner type (8, 0, . . . , 0) and face type (6, 0, . . . , 0).

2. 90, 180, 270 degree rotation around opposite faces (3 of each) with corner
types (0, 0, 0, 2, 0, 0, 0, 0), (0, 4, 0, 0, 0, 0, 0, 0), (0, 0, 0, 2, 0, 0, 0, 0) respectively,
and face types (2, 0, 0, 1, 0, 0), (2, 2, 0, 0, 0, 0), (2, 0, 0, 1, 0, 0) respectively.

3. 180 degree rotation around opposite edges (6) with corner type (0, 4, 0, 0, . . . , 0),
and face type (0, 3, 0, . . . , 0).

4. 120, 240 degree rotations about opposite corners (4 of each) with corner types
(2, 0, 2, 0, . . . , 0) for each, and face types (0, 0, 2, 0, 0, 0) for each.

Hence the cycle index for the corner group GC is

PGC
(z1, . . . , z8) =

1

24
(z81 + 6z24 + 9z42 + 8z21z

2
3),

and for the face group is

PGF
(z1, . . . , z8) =

1

24
(z61 + 6z21z4 + 3z21z

2
2 + 6z32 + 8z23).

Hence the number of nonequivaent colorings of the corners with two colors is

r8 + r7b+ 3r6b2 + 3r5b3 + 7r4b4 + 3r3b5 + 3r2b6 + rb7 + b8

and for the faces is

r6 + r5b+ 2r4b2 + 3r3b3 + 2r2b4 + rb5 + b6.

We verify that the total number of nonequivalent colorings for the corners is 23 and
for the faces is 10.

§3.3 Nonisomorphic graphs
Determine the number of nonisomorphic graphs of order (number of vertices) 4
with each possible number of edges.

Proof. The set of edges of any graph of order 4 (V = {1, 2, 3, 4}) is a subset of

X = {{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}} .

Let G4 be the set of all nonisomorphic graphs of order 4. We can consider E1 ⊆ X
as a “coloring” of its associated graph H = (V,E1) by letting it be the color ‘y’
if the edge is present and the color ‘n’ if not.

Consider H2 = (V,E2). Let f ∈ S4 permute the 4 vertices. The graphs are
isomorphic ⇐⇒ {i, j} is an edge of E1 ⇐⇒ {f(i), f(j)} is an edge of E2.
Consider the permutation group H ≤ S6, which permutes the 6 edges.

This problem is bijected to asking colorings of the set X that are equivalent.
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The table summarizes the monomials.

Type Monomial # of permutations in H

(6, 0, 0, 0, 0, 0) z61 1
(2, 2, 0, 0, 0, 0) z21z

2
2 9

(0, 0, 2, 0, 0, 0) z23 8
(0, 1, 0, 1, 0, 0) z2z4 6

The cycle index of H is

PH =
1

24

(
z61 + 9z21z

2
2 + 8z23 + 6z2z4

)
.

Now we substitute zj = yj + nj . We get that

y6 + y5n+ 2y4n2 + 3y3n3 + 2y2n4 + yn5 + n6.

The total number of nonisomorphic graphs of order 4 is 11. Indeed, PH(2, 2, 2, 2, 2, 2) =
11.
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