
Numerical Analysis

Pramana

Spring 2023

The goal of this course is to provide graduate students and advanced un-
dergraduate students with an introduction to numerical analysis, or numeri-
cal approaches to calculus. Topics to be covered include root-finding, interpo-
lation, polynomial approximation, numerical differentiation and integration,
and the numerical solution of ordinary differential equations. The course will
cover mathematical theory, and also the issues concerning the implementation
of the algorithms on modern computer hardware.

Professor: Chris Rycroft.

Contents

1. Introduction 3
1.1. Error analysis . 3

1.1.1. Sources of error . 3
1.1.2. Error definitions . 4

2. Iterative solutions 5
2.1. Root-finding . 5
2.2. Determining convergence of iterative solutions 5
2.3. Newton’s method . 7
2.4. Bisection method . 8
2.5. Convergence rates . 8

2.5.1. Application: Convergence of Newton’s method 9

3. Polynomial interpolation 11
3.1. Condition number . 11

3.1.1. Scalar functions . 11
3.1.2. Matrix multiplication . 11

3.2. Floating-point arithmetic . 12
3.3. Polynomial interpolation with matrices . 13

3.3.1. Changing the basis . 14
3.4. Hermite interpolation . 15
3.5. Linear least squares . 16

3.5.1. Non-polynomial least squares fitting 17
3.5.2. Pseudoinverse matrix . 18
3.5.3. Undetermined least squares . 18

4. Calculus 19
4.1. Differentiation: Finite difference approximation 19

4.1.1. General procedures: Taylor series . 19
4.1.2. General procedures: Lagrange interpolant 19

1

Numerical Analysis Contents Pramana

4.2. Integration: Quadrature schemes . 20
4.2.1. Composite quadrature schemes . 20
4.2.2. Error analysis of integration techniques 21

5. Polynomial approximation 23
5.1. Function space norms . 23
5.2. Minimizing the infinity norm for polynomials 23
5.3. Chevyshev polynomials . 26

5.3.1. Using Chebyshev polynomials in Lagrange interpolation 27
5.4. Working in the 2-norm . 28

5.4.1. Inner product spaces . 28
5.4.2. Best approximation in the 2-norm . 29
5.4.3. Gram-Schmidt orthogonalization . 29
5.4.4. Quadrature, revisited . 32

6. Piecewise polynomial interpolation 35
6.1. Linear splines . 35
6.2. Cubic splines . 35
6.3. B-splines . 36

7. Numerical ODEs 38
7.1. Ordinary differential equations . 38
7.2. One-step methods . 39

7.2.1. Euler’s method . 39
7.2.2. General cases . 40

7.3. Implicit 1-step methods/Runge-Kutta methods 41
7.3.1. Butcher tableau . 43

7.4. Linear multistep methods . 43
7.4.1. Zero-stability . 44
7.4.2. Consistency . 46
7.4.3. Stiff systems . 46
7.4.4. Stability . 46

7.5. Implicit Runge-Kutta methods . 47

A. Proof of (a variant of) Picard’s theorem 48

B. Singular value decomposition 50
B.1. Properties of the SVD . 50

C. Solving homogeneous recurrence relations 51

2

Numerical Analysis 1. Introduction Pramana

1. Introduction

January 25, 2023 For this class, we use the book An Introduction to Numerical Analysis by Süli and Mayers
[SM03]. If I refer to “the book”, I mean this one. Additionally, I will reference some python
files to demonstrate our methods in action, which can be found on the Class Github Page.
I do not mention them all, so feel free to explore them.

Numerical analysis is the study of the algorithms, while Scientific Computing empha-
sizes their applicaton to practical problems.

January 27, 2023 Key ideas for Numerical Analysis:

1. Approximating infintie/continuous process with finite/discrete process

2. Creating error bounds

1.1. Error analysis
1.1.1. Sources of error

There are multiple sources of error in numerical approximations:

1. Truncation/discretization: Approximations in order to compute things (finite differ-
ences, trucating infinite sequences, etc.)

2. Rounding: Finite precision arithmetic (limitations of hardware/memory storage)

Example 1.1 – Suppose we want to numerically approximate the derivative of f(x) = ex sinx.
We can do it by a finite difference approximation to f ′(x):

fdiff(x;h) =
f(x+ h)− f(x)

h
.

From Taylor series, we know

f(x+ h) = f(x) + hf ′(x) +
f ′′(θ)h2

2
, θ ∈ [x, x+ h].

Thus
fdiff(x;h) =

f(x+ h)− f(x)

h
= f ′(x) +

f ′′(θ)h

2︸ ︷︷ ︸
“error”

.

Suppose that |f ′′(θ)| ≤M . Then ∣∣f ′(x)− fdiff(x;h)
∣∣ ≤ Mh

2

gives the discretization error. Let f̃diff(x;h) denote the finite precision approximation to fdiff(x;h).
The numerator of f̃diff introduces a rounding error of size ε |f(x)|.ε ≈ 10−16 on

modern
computers. ∣∣∣fdiff(x;h)− f̃diff(x;h)

∣∣∣ ≤ ∣∣∣∣f(x+ h)− f(x)

h
− f(x+ h)− f(x) + ε |f(x)|

h

∣∣∣∣
=
ε |f(x)|
h

.

3

https://github.com/chr1shr/math514

Numerical Analysis 1.1. Error analysis Pramana

To get the total error, we use the triangle ineq.∣∣∣f ′(x)− f̃diff(x;h)
∣∣∣ ≤ ∣∣f ′(x)− fdiff(x;h)

∣∣+ ∣∣∣fdiff(x;h)− f̃diff(x;h)
∣∣∣

≤ Mh

2
+

ε |f(x)|
h︸ ︷︷ ︸

dominates when h small

1.1.2. Error definitions

Definition 1.1 (Absolute and relative error)
The absolute error is

abs. error = true value − approximate value.

The relative error is
rel. error =

abs. error
true value

We can use a more accurate numerical approximation to get the “true” value.

Example in class with python code: deriv.py. Error was smallest in the middle (in a log
plot). Our errors start with being discretization dominated, so by decreasing the step size
we gain accuracy. However, when step size gets very small, our rounding error starts to
matter more, and we lose accuracy.

Definition 1.2 (Algebraic convergence)
Let y = |abs. error|. IfJanuary 30, 2023 we have algebraic convergence, then

y ≈ αhβ .

This implies that
log y ≈ logα+ β log h,

so the absolute error should follow a straight line on a log plot.

4

Numerical Analysis 2. Iterative solutions Pramana

2. Iterative solutions

2.1. Root-finding
We are motivated to employ root-finding algorithms because solving f(x) = 0 for a function
f analytically may be impossible, or require too much effort.

Example 2.1 (Zeros in polynomials) – Not all functions have zeros that can be found easily
(or at all).

1. f(x) ∈ R[x], where deg f = 2, 3, 4 can be solved with a formula, but it gets increasingly
messy.

2. But if deg f = 5, then there is no general solution (Abel, 1824).
3. Does f(x) = cos2 x− x sin x

1+x2 have zeros? How many and where?
• f is continuous
• f(0) = 1, f

(
π
2

)
< 0.

By IVT there exists a zero in
[
0, π

2

]
.

To solve the last function, consider a related problem: solving x = g(x), which is the
same as solving f(x) = x− g(x) = 0. Then

x−
(
x+ cos2 x− x sinx

1 + x2

)
︸ ︷︷ ︸

g(x)

= 0

has the same zeros. We can solve this iteratively by starting with x0 and defining a se-
quence (xk)k∈N, where xk+1 = g(xk). We hope lim

k→∞
xk = ξ, where ξ = g(ξ), which we call a

fixed point. The program iter.py does this.

Definition 2.1 (Exponential convergence)
Sometimes we encounter exponential convergence, where if y = |abs. error|,

y ≈ αe−βk (= αCk).

Then
log y ≈ logα− βk,

which is linear, and can be found with linear regression.

Theorem 2.2 (Brouwer’s fixed point theorem)
If g(x) is continuous on [a, b] and g(x) ∈ [a, b] on x ∈ [a, b], then ξ = g(ξ) for some
ξ ∈ [a, b].

Proof. Let f(x) = x − g(x). Then f(a) = a − g(a) ≤ 0, f(b) = b − g(b) ≥ 0, and IVT
finishes.

2.2. Determining convergence of iterative solutions
February 1, 2023 Example 2.3 (Divergence of iterative solution) – Find the roots of f(x) = ex − x− 4.

5

Numerical Analysis 2.2. Determining convergence of iterative solutions Pramana

Solution. We write
x = ex − 4, or x = log(x+ 4).

Then run an iterative solution. For the first equation starting at x = 2, it blows up
quickly. For the second one, it converges to our solution.

To analyze why this happened, compare the two sequences

xk+1 = exk − 4, xk+1 = log(xk + 4).

Looking at consecutive values, we see that the first sequence goes to ∞ quickly, but the small
gradient of the second sequence makes it converge.

The convergence of xk+1 = g(xk) depends on whether g(x) is a contraction.

Definition 2.2 (Contraction)
A function g on [a, b] is a contraction if ∃L ∈ [0, 1) such that

|g(x)− g(y)| ≤ L |x− y| , ∀x, y ∈ [a, b].

x

|slope| = L

f(x)

Figure 1: Example of a contraction

Figure 1 shows a graphical interpretation of a contraction. It shows that all points of f
near x must lie between two blue lines with slope L.

Theorem 2.4 (Contraction mapping theorem)
Let g be continuous on [a, b] such that g(x) ∈ [a, b] for x ∈ [a, b]. If g(x) is a contraction,
then

• g has a unique fixed pt. ξ ∈ [a, b],

• The sequence (xk) given by xk+1 = g(xk) converges to ξ for any x0 ∈ [a, b].

6

Numerical Analysis 2.3. Newton’s method Pramana

Proof. A fixed point ξ ∈ [a, b] exists by Theorem 2.2. To show uniqueness, assume
that η ∈ [a, b] is also a fixed point. Then

|ξ − η| = |g(ξ)− g(η)| ≤ L |ξ − η| =⇒ |ξ − η| = 0.

To show convergence, we track the error

ek = |xk − ξ|
= |g(xk−1)− g(ξ)|
≤ |xk−1 − ξ|L

=⇒ ek ≤ Lek−1 ≤ L2ek−2 ≤ · · · ≤ Lke0.

Since limk→∞ Lk = 0 if |L| < 1, limk→∞ ek = 0.This shows we
have exponential
convergence to ξ;

smaller L =⇒
faster

convergence.

Suppose that g is differentiable on [a, b] and |g′(x)| ≤ L for L ∈ [0, 1). Consider x, y ∈
[a, b], x 6= y. There exists z ∈ [a, b] such that

g′(z) =
g(x)− g(y)

x− y
.

Thus differentiability and slopes less than 1 yield a contraction. But there are non-differentiable
functions that are contractions: g(x) = 1

2 |x| is a contraction on [−1, 1].
The convergence rate depends somewhat on |g′(ξ)|, since

lim
k→∞

ek+1

ek
= |g′(ξ)| .

As k → ∞, ek ≈
∣∣g′(ξ)k∣∣ e0.

2.3. Newton’s method
We try to solve f(x) = 0. Suppose

xk+1 = xk − λf(xk).

What λ gives the fastest convergence? If limn→∞ xk = ξ, then ξ = ξ − λf(ξ) =⇒ f(ξ) = 0.

g(x) = xλf(x) =⇒ g′(ξ) = 1− λf ′(ξ).

So λ = 1
f ′(ξ) is ideal.

February 3, 2023 Use λ = 1
f ′(xk)

. Then we rewrite the recursion as

xk+1 = xk − f(xk)

f ′(xk)
.

Newton’s method is shown graphically in Figure 2.
Remark 2.5. Problems with Newton’s method:

• When f ′(xk) = 0, there is no intersection with y = 0.

• Some functions diverge with Newton’s method, such as f(x) = x1/3.

• We need to compute f ′(xk) for each iteration.

7

Numerical Analysis 2.4. Bisection method Pramana

xkxk+1

Figure 2: Newton’s method

While some of these we cannot deal with, the last one may be aided by approximating
f ′ with the secant method:

f ′(xk) ≈
f(xk)− f(xk−1)

xk − xk−1
.

Thus
xk+1 = xk − (xk − xk−1)f(xk)

f(xk)− f(xk−1)
.

2.4. Bisection method
Let f be a function and a, b be values so that f(a)f(b) < 0 and f is continuous. IVT tells
us that there is a root. Let c = a+b

2 .

• If f(c)f(b) = 0, then ξ = c is a root,

• If f(c)f(b) < 0, repeat with [c, b],

• If f(c)f(b) > 0, repeat with [a, c].

This is guaranteed to converge, since the interval is always chopped in half. In fact, we
only need the sign of f(c), f(b). This is the bisection method.

All 3 methods have code: newton.py, secant.py, and bisection.py. Comparing the
methods with ex − x − 4, Newton’s and secant have rapid (quadratic) convergence, while
bisection is “linear” (both in the log plot).

2.5. Convergence rates

8

Numerical Analysis 2.5. Convergence rates Pramana

Definition 2.3 (Linear convergence)
Consider a sequence of errors |xk − ξ| ≤ ek.

• If
lim
k→∞

ek+1

ek
= µ, µ ∈ (0, 1),

then ek converges linearly (which is the same as exponential convergence). This
means ek ≈ µke0.

• The convergence rate (ρ) is the number of correct decimal digits gained per
iteration, which is ρ = − log 10(µ).

• If limk→∞
ek+1

ek
= µ = 0, then ek converges super-linearly.

• If the limit converges to 1, but ek → 0, then ek converges sub-linearly.

• If
lim
k→∞

ek+1

e2k
= µ > 0,

then ek converges quadratically.

Remark 2.6 (Determining quadratic convergence).February 6, 2023 For large k in quadratic convergence,

ek ≈ µe2k−1 ≈ µ(µe2k−2)
2 ≈ · · · ≈ µ2k−1e2

k

0 = µ−1(µe0)
2k .

Thus
log ek = − logµ+ 2k log(µe0).

To check if a sequence converge quadratically, we could graph log(log(ek)). However, this
is hard to do with with computer results because of rounding error/machine precision.

2.5.1. Application: Convergence of Newton’s method

Recall Newton’s method uses the formula

xk+1 = xk − f(xk)

f ′(xk)
.

Define ek = |xk − ξ|. Near xk, we know that

f(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(ηk)(x− xk)

2

for ηk between x and xk (using Taylor’s formula). Considering f(ξ),

−f(xk) + xkf
′(xk)− ξf ′(xk) =

1

2
f ′′(ηk)(ξ − xk)

2

xk+1 − ξ =
1

2

f ′′(ηk)

f ′(xk)
(ξ − xk)

2

|xk+1 − ξ| = 1

2

∣∣∣∣f ′′(ηk)f ′(xk)

∣∣∣∣ |ξ − xk|2 .

Suppose now that
∣∣∣ f ′′(x)
f ′(y)

∣∣∣ ≤ A for all x, y and choose x0 s.t. |ξ − x0| ≥ 1
A . Then

|ξ − x1| ≤
1

2
|ξ − x0| =⇒ |ξ − xk| ≤

1

2k
|ξ − x0| .

9

Numerical Analysis 2.5. Convergence rates Pramana

This shows that the error term ek converges. Since ηk, xk → ξ as k → ∞, we also have

lim
k→∞

|xk+1 − ξ|
|xk − ξ|2

=

∣∣∣∣ f ′′(ξ)2f ′(ξ)

∣∣∣∣ ≤ A

2
.

Thus Newton’s method gives ek+1 ≈ µe2k for µ =
∣∣∣ f ′′(ξ)
2f ′(ξ)

∣∣∣. So xk → ξ quadratically. This
motivates the following theorem.

Theorem 2.7 (Conditions for quadriatic convergence of Newton’s method)

Let f(ξ) = 0 and Iδ = [ξ − δ, ξ + δ]. If f ∈ C2(Iδ) and
∣∣∣ f ′′(x)
f ′(y)

∣∣∣ ≤ A for some A > 0

and all x, y ∈ Iδ, then Newton’s method converges quadratically for an initial guess
x0 given that |x0 − ξ| ≤ min

{
1
A , δ

}
.

Remark 2.8. • The above theorem applies to many cases, but may have problems at
multiple roots where f ′(ξ) = 0.

• Iterative equations like Newton’s method can diverge or have other complicated be-
havior. For example, consider xk+1 = axk(1 − xk) Computer simulation show that
sometimes it can converge, but also oscillates, or unpredictable behavior depending
on our choice of a.

• Newton’s method has the ability to generate fractals that show which root the method
converges to (see Newton fractals).

10

Numerical Analysis 3. Polynomial interpolation Pramana

3. Polynomial interpolation

3.1. Condition number
February 8, 2023 Many polynomial operation boil down to y = f(x), where x is an input and y is an output

(both may be scalars, vectors, or something else). We may wonder how a change ∆x in
input will affect the output:

y +∆y = f(x+∆x).

Definition 3.1 (Condition number)
Given a function f such that

y +∆y = f(x+∆x),

the condition number is
κ =

|∆y/y|
|∆x/x|

.

κ is unitless, and often reported as the largest such κ over a range of ∆x.

3.1.1. Scalar functions

Let f : R → R be a scalar, differentiable function such that f(x) = y.

y +∆y = f(x+∆x)

∆y

y
=
f(x+∆x)− f(x)

f(x)

=
f(x+∆x)− f(x)

∆x

∆x

f(x)

≈ f ′(x)∆x

f(x)

κ ≈
∣∣∣∣f ′(x)xf(x)

∣∣∣∣ .
3.1.2. Matrix multiplication

To get a general measure of error we introduce norms, which will replace our absolute
value bars for non-scalar values.

Definition 3.2 (Norm)
A norm ‖·‖ : V → R is defined on a real or complex vector space, and measures dis-
tance to the origin. It must be positive definite, have scalar multiplication, and satisfy
the triangle inequality.

For A ∈ Rn×n, x, b ∈ Rn, let Ax = b (where A is invertible). Then A(x + ∆x) = b + ∆b.
Since A is a linear map, A∆x = ∆b. The condition number in this case is

κ =
‖∆b‖ / ‖b‖
‖∆x‖ / ‖x‖

=
‖∆b‖
‖b‖

· ‖x‖
‖∆x‖

=
‖A∆x‖
‖∆x‖

· ‖x‖
‖Ax‖

.

11

Numerical Analysis 3.2. Floating-point arithmetic Pramana

To “measure” A, we define the matrix norm induced by the vector norm on A as

‖A‖ = max
v 6=0

‖Av‖
‖v‖

.

Thus
κ ≤ ‖A‖ · ‖x‖

‖Ax‖
.

Using the fact that x = A−1b,

κ ≤ ‖A‖
∥∥A−1b

∥∥
‖v‖

≤ ‖A‖ ·
∥∥A−1

∥∥ .
Definition 3.3 (Condition number of a matrix)
We may define the condition number of a matrix A as

κ(A) := ‖A‖ ·
∥∥A−1

∥∥ .
The function numpy.linalg.cond numerically calculates this value.

Solving a linear system has the same condition number as matrix multiplication: Sup-
pose C ∈ Rn×n and y, f ∈ Rn. We try to solve

Cy = f,

where f is the input and y is the output. If C is invertible, we can rewrite to

y = C−1f,

so, by the last section,
κ = ‖C‖ ·

∥∥C−1
∥∥ .

Example 3.1 (Calculating matrix norm) – Let

A =

[
3 0
0 1

]
.

‖A‖ = max
v 6=0

‖Av‖
‖v‖

= max
‖v‖=1

‖Av‖

= max
x2+y2=1

‖(3x, y)‖

= max
x2+y2=1

√
3x2 + y2 = 3.

Remark 3.2. The condition number characterizes the spread of eigenvalues. In general,
it is the ratio of the singular values.

3.2. Floating-point arithmetic
February 10,

2023
To obtain an accurate answer we need to apply a stable numerical method to a well-
conditioned mathematical problem. A “stable numerical method” is a method that doesn’t
accumulate error.

12

Numerical Analysis 3.3. Polynomial interpolation with matrices Pramana

To investigate a source of error, we look at how computers work with floating-point num-
bers. Computers use the “scientific notation” of numbers in base 2.

±︸︷︷︸
sign

d1, . . . , dp︸ ︷︷ ︸
mantissa bits

E︸︷︷︸
exponent bits

.

d0 is assumed to be 1 (except for 0). E lies in an interval L ≤ E ≤ U . For example,

• IEEE single point precision has p = 23, L = −126, and U = 127,

• IEEE double point precision has p = 52, L = −1022, and U = 1023.

There are also exception values: Inf, NaN, 0.
How to represent x ∈ R that is not a floating point number?

• Case 1: Too small (≈ 10−323) → 0 or too large (≈ 10308) → Inf

• Case 2: Too many mantissa bits. ε is the difference between 1 and the next floating
point number after 1. This is machine precision. In IEEE double precision, ε ≈
2.22× 10−16.

We have ∣∣∣∣round(x)− x

x

∣∣∣∣ < ε,

so we can bound relative error by machine error.
We want numerical methods to have backward stability. For example, Ax = b should

give the same solution for (A+∆A)x = b+∆b for small ∆A,∆b.

3.3. Polynomial interpolation with matrices
Definition 3.4 (Polynomial notation)
Let Pn denote the set of all polynomials of degree n on R. If p(· ; b) ∈ Pn, then

P (x; b) =

n∑
k=0

bkx
k,

for b ∈ Rn+1.

For data points S = {(x0, y0), . . . , (xn, yn)}, we want to find a polynomial that passes
through every point. {x0, . . . , xn} are the interpolation points. We require our desired
polynomial p to satisfy

p(xi; b) = yi.

This gives n + 1 equations to solve, so we look for p ∈ Pn. These equations can become a
matrix 

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn



b0
b1
...
vn

 =


y0
y1
...
yn


or

V b = y.

V is a Vandermonde matrix.
February 13,

2023
Is there a unique solution to this system?

13

Numerical Analysis 3.3. Polynomial interpolation with matrices Pramana

Lemma 3.3
If the n+ 1 interpolation points are distinct, then V b = y has a unique solution.

A result in linear algebra is that if Az = 0 =⇒ z = 0 (over a finite-dimensional real vector
space), then Ab = y has a solution.

In our case, if V b = 0, then p(· ; b) ∈ Pn vanishes at n+ 1 distinct points. A polynomial
of degree n has n+1 roots only when it is the 0 polynomial, so b = 0, and a unique solution
exists.
Remark 3.4 (Disadvantages of Vandermonde matrices). The Vandermonde matrix is ill-
conditioned, which means that κ(V) gets large.

Horner’s method
lets us evaluate

polynomials
faster:

a+ bx+ cx2 →
a+ x(b+ cx)

etc...

Even with smaller degree polynomials, there are hints of blow-up. When graphing an
interpolation, the largest errors tend to be near the endpoints. A small change in y changes
b significantly.

3.3.1. Changing the basis

We try constructing a basis such that the interpolation matrix (the analog of V) is I. We
can do this using Lagrange polynomials. Let Lk ∈ Pn, k = 0, . . . , n where

Lk(xi) =

{
0 if i 6= k,

1 if i = k.

This polynomial exists:

Lk(x) =

n∏
j=0
j 6=k

x− xj
xk − xj

. (3.1)

The Lagrange polynomial interpolates discrete points exactly. Can we use interpolation to
accurately approximate continuous functions?

Theorem 3.5 (Cauchy approximation theorem)
Suppose that some data points come from a function f on [a, b]. Then

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0) · · · (x− xn),

where ξ ∈ (a, b) and pn is the interpolated polynomial.

Proof for the case n = 1.February 15,
2023

Let p1 ∈ P[x0, x1]. Interpolate f ∈ C2[a, b] at {x0, x1}. For
some λ ∈ R, we may write

q(x) = p1(x) + λ(x− x0)(x− x1).

Fix x̂ ∈ (x0, x1) and set q(x̂) = f(x̂). These functions look something like Figure 3.
Therefore

λ =
f(x̂)− p1(x̂)

(x̂− x0)(x̂− x1)
.

Define e(x) = f(x)− q(x).

• e has three zeros in [x0, x1].

• e′ has two roots in (x0, x1) by Rolle’s theorem.

14

Numerical Analysis 3.4. Hermite interpolation Pramana

• e′′ has one root in (x0, x1).

Now define ξ ∈ (x0, x1) s.t. e′′(ξ) = 0. Thus

0 = f ′′(ξ)− p′′1(ξ)− λ
d2

dξ2
(ξ − x0)(ξ − x1)

= f ′′(ξ)− 2λ.

This means λ = 1
2f

′′(ξ).

f(x̂)− p1(x̂) = λ(x̂− x0)(x̂− x1) =
f ′′(ξ)

2
(x̂− x0)(x̂− x1).

f

a x0 x1 bx̂

q

Figure 3: Cauchy approximation theorem diagram

We can generalize this proof to [a, b] and to the stated equation in the theorem.

Corollary 3.6
We may bound

|f(x)− pn(x)| ≤
Mn+1

(n+ 1)!
max
x∈[a,b]

|(x− x0) · · · (x− x0)|

where
Mn+1 = max

ξ∈(a,b)

∣∣∣f (n+1)(ξ)
∣∣∣ .

To get a good approximation, we want |(x− x0) · · · (x− x0)| to be small. Finding a way to
make this small motivates a future discussion about Chebyshev nodes/polynomials.

3.4. Hermite interpolation
Hermite interpolation uses facts about f(x) and f ′(x) at certain points to create our poly-
nomial and interpolate f . Our goal is to find a polynomial that matches f(x) and f ′(x) at
ponints x0, . . . , xn. Since there are 2n + 2 constraints we try to fit polynomial p of degree
2n+ 1 with the conditions

p2n+1(xi) = yi, p′2n+1(xi) = zi.
15

Numerical Analysis 3.5. Linear least squares Pramana

Recall the Lagrange polynomials Lk(x) Equation 3.1. Define

Hk(x) = [Lk(x)]
2
(1− 2L′

k(xk)(x− xk)), (3.2)

Kk(x) = [Lk(x)]
2
(x− xk). (3.3)

We can show

Hk(xi) =

{
0 if i 6= k,

1 if i = k.
Kk(xi) = 0, H ′

k(xi) = 0 K ′
ks(xi) =

{
0 if i 6= k,

1 if i = k.

Hence
p2n+1(x) =

n∑
k=0

(ykHk(x) + zkKk(x)). (3.4)

Equation 3.4 is (1) unique and (2) has an approximation error:

f(x)− p2n+1(x) =
f (2n+2)(ξ)

(2n+ 2)!
((x− x0) · · · (x− xn))

2

3.5. Linear least squares
February 17,

2023
If some data has an element of noise, an exact Lagrange interpolation may be overfitted,
and a low order polynomial fit may be better suited for it.

Recall that before, the number of data points m equaled the number of polynomial coef-
ficients n. For least squares, we reduce the order of the polynomial n, so that m > n. Now
our equation

Ab = y

has A as a “tall thin rectangular matrix”. While we cannot solve it exactly, we minimize
the residual:

r(b) := y −Ab ∈ Rm,

specifically, we want to minimize the 2-norm of r:

‖r(b)‖2 =

(
m∑
i=1

ri(b)
2

) 1
2

,

since it gives us a differentiable function.
Define φ(b) = ‖r(b)‖22.

φ(b) = ‖r‖22
= rT r

= (y −Ab)T (y −Ab)

= yTy − yTAb− bTATy + bTATAb ((yTAb)T = bTATy)
= yTy − 2bTATy + bTATAb.

A minimum must exist, but it need not be unique. To find the minimum, differentiate with
respect to b. Define c := ATy. Since

∂

∂bi
(bT c) = ci,

∇b(b
TATy) = ATy.

16

Numerical Analysis 3.5. Linear least squares Pramana

x

y

Figure 4: Linear least squares attempts to create a function that minimizes the squares
of the red dashed lines.

Now we consider ∇b(b
TATAb), and define M = ATA. Note that M is symmetric.

bTMb = bT

(
n∑

j=1

M•,j︸︷︷︸
jth column of M

bj

)
.

Then

∂

∂bk
(bTMb) = eTk

(
n∑

j=1

M•,jbj

)
+ bT

(
n∑

j=1

M•,j
∂bj
∂bk︸︷︷︸
δj,k

)
=

n∑
j=1

Mk,jbj + bTM•,k = 2Mk,•b.

where ek is the kth unit vector. Thus

∇b(b
TATAb) = 2ATAb =⇒ ∇φ(b) = −2ATy + 2ATAb.

Solving for 0, we end up with the normal equations:

ATAb = ATy. (3.5)

We can solve the normal equations directly, but it is not numerically stable as other meth-
ods. For exmaple, the lstsq function in numpy is more stable.

3.5.1. Non-polynomial least squares fitting

February 20,
2023

Example 3.7 – Approximate e−x cos 4x using

fn(x; b) =

n∑
k=−n

bke
kx.

17

Numerical Analysis 3.5. Linear least squares Pramana

Note that fn is linear in b. In this case, the matrix looks like
e−2x0 e−x0 1 ex0 x2x0

e−2x1 e−x1 1 ex1 x2x1

...
...

...
...

...
e−2xn−1 e−xn−1 1 exn−1 e2xn−1



b−2

b−1

b0
b1
b2

 =


y0
y1
...

yn−1.



We cannot use the same method if the function is not linear in the coefficients b, but for
functions that behave as follows,

fn(x; γa+ λb) = γfn(x; a) + λfn(x; b),

we can run a least-squares fit on them.

3.5.2. Pseudoinverse matrix

We want to generalize the inverse

Definition 3.5 (Pseudoinverse matirx)
Let A ∈ Rm×n. Then the pseudoinverse is defined as

A+ = (ATA)−1AT ∈ Rn×m.

Then b = A+y is another way of finding the least squares coefficients with Equation 3.5.
A+A = I, but AA+ 6= I in general. The pseudoinverse may be called the left inverse.

3.5.3. Undetermined least squares

We consider the final case where our matrix is short and wide. We can follow the same
derivation as the normal equations.

ATAb = ATy.

But in this case, ATA ∈ Rn×n has rank at most m (m < n). Hence ATA is singular (a
square matrix without an inverse), and we have infinitely many choices for b.

Because of this, we may formulate this as an optimization problem, so let’s try to mini-
mize bTb. This is solved by b = AT (AT)−1y. We can redefine the pseudoinverse,

A+ = AT (AAT)−1,

but this is a right inverse.
Remark 3.8 (Regularization). Modify φ(b) to obtain a unique maximum by letting

φ(b) = ‖r(b)‖22 + ‖Sb‖22 , (3.6)

where S ∈ Rn×m is a scaling matrix. This is called regularization. The equivalent normal
equations for this is

(ATA+ STS)b = ATy. (3.7)
If STS is positive definition, then (ATA+STS) is invertible. We can use regularization to
prioritize different conditions.

18

Numerical Analysis 4. Calculus Pramana

4. Calculus

4.1. Differentiation: Finite difference approximation
February 22,

2023
We can approximate using nearby points:

forward difference backwards difference centered difference
f ′(x0) ≈ f(x0+h)−f(x0)

h f ′(x0) ≈ f(x0)−f(x0−h)
h f ′(x0) ≈ f(x0+h)−f(x0−h)

2h

Table 1: Difference approximations

From Taylor series, we find

f(x0 + h)− f(x0)

h
= f ′(x0) +

hf ′′(x0)

2
+O(h2).

This is first order accurate, so abs. error is O(h). The centered difference results in

f(x0 + h)− f(x0 − h)

2h
= f ′(x0) +O(h2).

So the abs. error O(h2).

4.1.1. General procedures: Taylor series

Consider the Taylor series of f centered at x at x, x+ h, x+ 2h:

f(x) = f(x) + 0f ′(x) + 0f ′′(x) +O(h3),

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +O(h3),

f(x+ 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +O(h3).

We want to find a finite difference approximation s.t.

f ′tay(x) = αf(x) + βf(x+ h) + γf(x+ 2h)

and
f ′tay(x) = f ′(x) +O(h2).

Solving for α, β, γ, we find a new finite difference approx.:

f ′tay(x) =
−3f(x) + 4f(x+ h)− f(x+ 2h)

2h
.

4.1.2. General procedures: Lagrange interpolant

Instead consider the Lagrange polynomial p2(x) through x, x+h, x+2h and find p′2(x). To
simplify, change variables to x 7→ z + x, so the three basis functions are at z = 0, h, 2h:
L0, L1, L2. The Lagrange interpolant is

L = f(x)L0 + f(x+ h)L1 + f(x+ 2h)L2.

L′(0) is the same as with the Taylor series.
Remark 4.1. In general, the Lagrange interpolant method can get you an answer directly,
which may be easier to calculate by hand, whereas the Taylor series method gives you a
linear system, which computers can solve very quickly.

19

Numerical Analysis 4.2. Integration: Quadrature schemes Pramana

4.2. Integration: Quadrature schemes
February 24,

2023
The idea of numerical integration is to get a polynomial approximation of our function and
then integrate that polynomial (which we know how to do). For example, we can integrate
a Lagrange interpolation of the desired function.∫ b

a

f(x) dx ≈
∫ b

a

pn(x) dx =

n∑
k=0

wkf(xk), (4.1)

where
wk :=

∫ b

a

Lk(x) dx (4.2)

are the quadrature weights, and xk are the quadrature points (abscissae). The set of all
{xk, wk} are the quadrature scheme.

This means that we don’t even have to integrate our polynomials, we simply have to
evaluate our function at several points and assign our quadrature weights accordingly.

If xi’s are equally spaced, this is the Newton-Cotes formula of order n.

Example 4.2 (Newton-Cotes in the case n = 1) – Let x0 = a, x0 = b. Then

p1(x) = L0(x)f(a) + L1(x)f(b) =
1

b− a
[(b− x)f(a) + (x− a)f(b)].

∫ b

a

p1(x) dx =
b− a

2
[f(a) + f(b)].

This is the trapezoid approximation.

4.2.1. Composite quadrature schemes

Divide [a, b] into n intervals [xi, xi+1], 0 ≤ i ≤ n− 1. Then∫ b

a

f(x) dx =
n−1∑
i=0

∫ xi+1

xi

f(x) dx

If we let h = b−a
n , xi = a+ ih,

≈ h

2
(f0 + f1) + · · ·+ h

2
(fm−1 + fm) =

h

2
(f0 + fm) + h

m−1∑
i=1

fi.

Example 4.3 (Newton-Cotes in the case n = 2) –∫ b

a

f(x) dx ≈
∫ b

a

f(a)L0(x) + f

(
a+ b

2

)
L1(x) + f(b)L2(x) dx.

Examining the quadrature weights:

w1 =

∫ b

a

L1(x) dx =
4

6
(b− a).

Instead of calculating the other two, we note

w0 + w1 + w2 =

∫ b

a

1 dx = b− a

20

Numerical Analysis 4.2. Integration: Quadrature schemes Pramana

By symmetry, w0 = w2, so
w0 = w2 =

b− a

6
.

Thus ∫ b

a

f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
. (4.3)

This is also called Simpson’s rule.

Example 4.4 (Composite Simpson’s rule) –∫ b

a

f(x) dx =

m−1∑
i=0

∫ xi+1

xi

f(x) dx

Let h := b−a
6m

. Then∫ b

a

f(x) dx ≈
m−1∑
i=0

h

6

[
f(xi) + 4f

(xi + xi+1

2

)
+ f(xi+1)

]
Define M := 2m, h := b−a

M
, and xi := a+ ih. Then we may rewrite the formula as

∫ b

a

f(x) dx ≈ h

3

M
2

−1∑
i=0

[f(x2i) + 4f(x2i+1) + f(x2i + 2)] . (4.4)

4.2.2. Error analysis of integration techniques

Consider a general quadrature scheme on [a, b]:

pn(x) =

n∑
k=0

f(xk)Lk(x), xk := a+ kh, h :=
b− a

n
.

We have ∫ b

a

f(x) dx =

(
n∑

k=0

wkf(xk)

)
+ En(f),

where
En(f) :=

∫ b

a

f(x)− pn(x) dx.

By the Cauchy approximation theorem,

|En(f)| =

∣∣∣∣∣
∫ b

a

f(x)− pn(x) dx

∣∣∣∣∣
≤
∫ b

a

|f(x)− pn(x)| dx

≤ Mn+1

(n+ 1)!

∫ b

a

|πn+1(x)| dx

21

Numerical Analysis 4.2. Integration: Quadrature schemes Pramana

Example 4.5 (Error analysis of trapezoid rule) –

|E1(f)| ≤
M2

2

∫ b

a

|(x− a)(x− b)| dx

=
M2

2

∫ b

a

(x− a)(b− x) dx

=
M2

12
· h3.

Example 4.6 (Composite trapezoid rule error) –February 27,
2023

Let fi := f(xi), xi = a + ih, h = b−a
m

. The
error can be written as

E1(f) =

∫ b

a

f(x) dx− h

(
1

2
f0 + f1 + · · ·+ fm−1 +

1

2
fm

)
=

m∑
i=1

(∫ xi

xi−1

f(x) dx− h

2
(fi−1 + fi)

)
.

The term inside the sum is just the trapezoid method error. Thus

|E1(f)| ≤
m∑
i=1

h3

12
max

ξ∈[xi−1,xi]
|f ′′(ξ)|

≤
m∑
i=1

h3

12
M2

=
b− a

12
M2h

2.

Then the composite trapezoid rule is second-order accurate, Error = O(h2).

Remark 4.7. We note that |E1(f)| is large when |f ′′(ξ)| is large. The adaptive quadrature
puts more sample points where |f ′′(ξ)| is large to minimize the error there.

Example 4.8 (Composite Simpson’s rule error) –

|E2(f)| ≤
M3

6

∫ b

a

∣∣∣∣(x− a)

(
x− a+ b

2

)
(x− b)

∣∣∣∣ dx
=

(b− a)4

196
M3

for a single interval. Following a similar proof to the previous example, for the composite rule,
we find

|E2(f)| ≤
b− a

196
M3h

3.

Remark 4.9. However, when we test quadrat.py on
∫ 5

1
sinx dx, we find that error scales

more like O(h4). This is because there is a sharper bound:

|E2(f)| ≤
b− a

2880
M4h

4,

which is fourth-order. For a proof of this, see Süli-Mayers. This means that when h is
halved, the error is divided by 16(!).

22

Numerical Analysis 5. Polynomial approximation Pramana

5. Polynomial approximation

5.1. Function space norms
Consider C[a, b], the set of continuous functions on [a, b]. We may define norms on this
space:We may write

max instead of
inf because f is
continuous on a

compact set, so it
achieves its

maximum

‖f‖p :=

(∫ b

a

|f(x)|p dx

) 1
p

, ‖f‖∞ := max
x∈[a,b]

|f(x)|.

Remark 5.1. Depending on the norm we focus on, there is a large difference in what we
find. Consider f(x) = 10−6

x1/4 . We can calculate that

‖f‖∞ = ∞, ‖f‖2 =

(∫ 1

0

(10−6)2

x1/2
dx

)
= 10−6 ·

√
2.

Remark 5.2 (Weighted norms). We may define a weighted norm as

‖f‖2 =

(∫ b

a

w(x)f(x)2 dx

) 1
2

, w(x) > 0.

For example, if we let a = −1, b = 1, and w(x) = 1√
1−x2

, the norm represents the function
more at −1 and 1.

Theorem 5.3 (Weierstass approximation theorem)
Given f ∈ C[a, b], for all ε > 0, we can find a polynomial p such that

‖f − p‖∞ < ε.

Construction. Consider C[0, 1]. We can defineThe proof that
this construction

works is not
trivial, but we

will not prove it
here. It is in my

Analysis I notes.

pn(x) :=

n∑
k=0

pnk(x)f

(
k

n

)
, pnk :=

(
n

k

)
xk(1− x)n−k.

These are called Berstein polynomials.

The Weierstrass approximation is usually only good in theory though, as it can get very
slow to coverge within a certain distance of a function.

5.2. Minimizing the infinity norm for polynomials
March 1, 2023 Is there a degree n polynomial pn such that ‖f − pn‖∞ is minimized? We define the func-

tion
ρn(f) := inf

q∈Pn

‖f − q‖∞ = ‖f − pn‖∞ .

This is the minimax error.

Theorem 5.4 (Polynomial minimizing infinity norm of each degree exists)
Given f ∈ C[a, b] there exists pn ∈ Pn such thatSince we write

min here, we
imply that pn

acutally exists
‖f − pn‖∞ = min

q∈Pn

‖f − q‖∞ .

23

Numerical Analysis 5.2. Minimizing the infinity norm for polynomials Pramana

Proof sketch. Define E : Rn+1 → R such that

E(c0, . . . , cn) := ‖f − qn‖∞ , qn := c0 + · · ·+ cnx
n.

We require two claims:
Claim 5.1. E is continuous.

Claim 5.2. There is a nonempty, bounded, closed set S such that the lower bound of
E on S is the same as its lower bound on Rn+1.

Combining these two, since S is compact, E hits its minimum on S, proving the
theorem.

There is a problem with Theorem 5.4: it is not constructive; we have no way of finding the
polynomial pn.

Example 5.5 – Let’s try and construct them for small values of n.
• Case 1 (n = 0): Consider f ∈ C[a, b] for simplicity. Define pn(x) = c0. Since f is

continuous on a compact set, it hits its maximum and minimum. Let

f(ξ) = max f, f(η) = min f.

Then
c0 =

1

2
(f(ξ) + f(η)) .

• Case 2 (n = 1): We will consider f(x) = x2 on [0, 1]. Let p1 = c0, c1x. Then the minimax
error is

ρ1(f) =
∥∥x2 − (c0 + c1x)

∥∥
∞ .

By analyzing the derivative or the vertex of this parabola, it has maxima at x = 0, c1
2
, 1.

Thus

‖f − p1‖∞ = max
{
|f(0)− p(0)|,

∣∣∣f (c1
2

)
− p− 1

(c1
2

)∣∣∣ , |f(1)− p1(1)|
}

= max

{
|c0|, |1− c0 − c1|,

∣∣∣∣−c214 − c0

∣∣∣∣} .
ρ1 is minimized when the maxima have the same value. Let ρ1(f) = a. To remove
absolute values, we square everything:

c20 = a2, (1− c0 − c1)
2 = a2,

(
c21
4

+ c0

)2

= a2.

This has a solution, p1(x) = − 1
8
+ x =⇒ ρ1(f) =

1
8
.

While we could continue for higher n, it will get much more complicated, so we seek more
general approaches.

24

Numerical Analysis 5.2. Minimizing the infinity norm for polynomials Pramana

Theorem 5.6 (De la Valleé Poussin)
Let f ∈ C[a, b], r ∈ Pn. Consider n+ 2 points such that

a ≤ x0 < x1 < · · · < xn+1 ≤ b.

such that f(xi)− r(xi) and f(xi+1)− r(xi+1) have opposite signs for 0 ≤ i ≤ n. Then

ρn(f) = min
q∈Pn

‖f − q‖∞ ≥ min
i

|f(xi)− r(xi)|.

Proof. Suppose the conclusion is false for contradiciton. Thus

|q(xi)− f(xi)| < |r(xi)− f(xi)|, 0 ≤ i ≤ n+ 1. (5.1)

r(xi) − q(xi) = (r(xi) − f(xi)) − (q(xi) − f(x − i)). However, from 5.1, we have that
the second term is smaller in magnitude than the first. Thus r− q also changes signs
n + 1 times. So r − q has n + 1 roots. However, r − q ∈ Pn, so r − q = 0 =⇒ r = q.
This means that 5.1 is an equality, which is a contradiction.

Definition 5.1 (Minimax polynomial)
The polynomial q that minimizes ‖f − q‖∞ is called a minimax polynomial.

Theorem 5.7 (Oscillation theorem)
Given f ∈ C[a, b],This is theorem

8.4 in
Süli-Mayers

r ∈ Pn is a minimax polynomial for f if and only if there exists a
sequence of n+ 2 points x0, . . . , xn+1

a ≤ x0 < x1 < · · · < xn+1 ≤ b

such that
|f(xi)− r(xi)| = ‖f − r‖∞ , 0 ≤ i ≤ n+ 1

and
f(xi)− r(xi) = − (f(xi+1)− r(xi+1)) .

Theorem 5.8 (Uniqueness theorem)
Each f ∈ C[a, b] has a unique minimax polynomial pn ∈ Pn.

Proof. Suppose that qn 6= pn is also a minimax polynomial. Then

‖f − pn‖∞ = ‖f − qn‖∞ = En(f).

Consider 1
2 (pn + qn). We can show∥∥∥∥f − 1

2
(pn + qn)

∥∥∥∥ ≤ En(f),

so this is a minimax polynomial as well. By Theorem 5.7, we can find {x0, . . . , xn+1} ⊆

25

Numerical Analysis 5.3. Chevyshev polynomials Pramana

[a, b] so that ∣∣∣∣f(xi)− 1

2
(pn(xi)− qn(xi))

∣∣∣∣ = En(f),

=⇒ |(f(xi)− pn(xi)) + (f(xi)− qn(xi))| = 2En(f). (5.2)
We also know

|f(xi)− pn(xi)| ≤ max
x∈[a,b]

|f(x)− pn(x)| = ‖f − pn‖∞ = En(f). (5.3)

Similarly,
|f(xi)− qn(xi)| ≤ En(f). (5.4)

This implies that f(xi) − pn(xi) = f(xi) − qn(xi)Add 5.3, 5.4 and
compare the
result to 5.2.

. Thus pn(x) − qn(x) = 0 at n + 2
points. Since pn − qn ∈ Pn, pn − qn = 0.

We have no way of finding the minimax polynomial for a broad class of functions. We
therefore try lifting some restrictions.

5.3. Chevyshev polynomials
March 5, 2023 Definition 5.2 (Chebyshev polynomials)

On the interval [−1, 1], the Chebyshev polynomials are defined as

Tn(x) := cos(n cos−1 x).

Remark 5.9. While it does not seem like this formula will create polynomials, we can
show that T0 and T1 are both polynomials, and one of the following facts will inductively
tell us that, inductively, all Tn are polynomials.

Proposition 5.10 (Properties of Chebyshev polynomials)
The Chebyshev polynomials satisfy the following properties.

• Tn+1(x) = 2xTn(x) + Tn−1(x)

• Tn is even if and only if n is even (same for odd)

• |Tn(x)| ≤ 1, x ∈ [−1, 1]

• Tn(x) = 0 ⇐⇒ x = xj = cos
(

(2j−1)π
2n

)
, j = 1, . . . , n.

• Tn(x) = ±1 at n+ 1 points: x = yk = cos kπ
n

• The leading coefficient of Tn(x) is 2n−1 for n ≥ 1.

We care about this polynomials because they may give a good approximation of the mini-
max, or the best!

Example 5.11 (Chebyshev gives best approximation) – We approximate f(x) = x3 by p2 ∈ P2

on [−1, 1].
x3 − 1

22
T3(x) =

3

4
x ∈ P2 =⇒ f(x)− 3

4
x =

1

4
T3(x).

By examining the graph, the error is 1
4

at n+2 = 4 points. Thus 3
4
x is the minimax polynomial

by Theorem 5.7.

26

Numerical Analysis 5.3. Chevyshev polynomials Pramana

Generally, the minimax polynomial of f(x) = xn+1 is

pn(x) := xn+1 − 1

2n
Tn+1(x).

We gain something from this example, but first we need to define a specific space.

Definition 5.3 (Monic polynomials)
Monic polynomials have leading coefficient 1. Let the set of all polynomials less than
or equal to degree n that are monic be P1

n.

Corollary 5.12
Suppose n ≥ 0. Then among all P1

n+1, the polynomial 2−nTn+1 has the smallest ∞-
norm on [−1, 1] against xn+1.

Proof. Let r ∈ P1
n+1. This can be written as

r(x) = xn+1 − q(x), q ∈ Pn.

Then

min
r∈P1

n+1

‖r‖∞ = min
q∈Pn

∥∥xn+1 − q
∥∥
∞

=
∥∥xn+1 − (xn+1 − 2−nTn+1)

∥∥
∞

=
∥∥2−nTn+1

∥∥
∞ .

Hence the minimum is achieved when r(x) = 2−nTn+1

5.3.1. Using Chebyshev polynomials in Lagrange interpolation

Recall that
p(x) :=

n∑
k=0

f(xk)Lk(x) ∈ Pn,

where
Lk(x) :=

n∏
i=0
i 6=k

(x− xi)

(xk − xi)
.

The error is given by

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!
πn+1(x),

where
πn+1(x) := (x− x0) · · · (x− xn).

We note that πn+1 is a monic polynomial. To minimize ‖πn+1‖∞, use Corollary 5.12. The
smallest ∞-norm is achieved with 2−nTn+1(x). By choosing

xj = cos

(
(2j − 1)π

2(n+ 1)

)
, j = 1, . . . , n+ 1,

πn+1 = 2−nTn+1(x).
27

Numerical Analysis 5.4. Working in the 2-norm Pramana

Remark 5.13. By minimizing ‖πn+1‖∞, we are not finding the best polynomial fit. How-
ever, this tends to be a very good choice to reduce error.

In general, for f ∈ Cn[a, b],

pn(x) =

n∑
k=0

f(xk)Lk(x)

can have a low error by letting the xk ’s be Chebyshev nodes:Of course, Mn+1

is defined with
the n+ 1th

derivative, so
bound only exists

when
f ∈ Cn+1[a, b].

xk :=
1

2
(a+ b) +

1

2
(b− a) cos

(
2k − 1

2(n+ 1)

)
, k = 1, . . . , n+ 1.

Thus
‖f − pn‖∞ ≤ (b− a)n+1

22n+1(n+ 1)!
Mn+1.

There is example code in cheb_converge.py.

5.4. Working in the 2-norm
5.4.1. Inner product spaces

March 6, 2023 Recall that a norm gives us a way to measure distance. We want an analog of angle, or
orthogonality.

Definition 5.4 (Inner product)
An inner product 〈 · , · 〉 : V × V → R satisfies four axioms:

1. 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉

2. 〈λf, g〉 = λ 〈f, g〉

3. 〈f, g〉 = 〈g, f〉

4. 〈f, f〉 > 0 if f 6= 0.

Remark 5.14. The inner product induces a norm: ‖u‖ =
√

〈u, u〉.

Example 5.15 – The vector scalar product (dot product) on Rn is an inner product. Its induced
norm is the Euclidean norm.

Theorem 5.16 (Cauchy-Schwarz inequality)

|〈f, g〉| ≤ ‖f‖ ‖g‖ , ∀f, g ∈ V.

Proof. We find
‖λf + g‖2 = λ2 ‖f‖2 + 2λ 〈f, g〉+ ‖g‖2 .

If we let this a polynomial on λ, we know that it cannot have two distinct roots ⇐⇒
the discriminant is ≤ 0. By writing it out and simplifying, the inequality is proven.

28

Numerical Analysis 5.4. Working in the 2-norm Pramana

Definition 5.5 (Inner product space)
A linear space equipped with an inner product is called an inner product space.

Example 5.17 (Inner product spaces examples) – The following are inner product spaces:
• Let V = C[a, b]. Define

〈f, g〉 :=
∫ b

a

w(x)f(x)g(x) dx,

where w is a weight function.
• Let V = L2(a, b) =

{
f | f defined on [a, b], ‖f‖2 <∞

}
.

5.4.2. Best approximation in the 2-norm

Let f ∈ L2(a, b). We want to find pn ∈ Pn s.t.

‖f − pn‖2 ≤ inf
q∈Pn

‖f − q‖2 .

Example 5.18 (n = 0) – Let f(x) = x−1/4 on [0, 1] with w(x) = 1, n = 0. We want

‖f − c‖22 =

∫ 1

0

(x−1/4 − c)2 dx

= 2− 8c

3
+ c2.

This is minimized at c = 4
3
.

To proceed for general n, the algorithms are numerically unstable. Consider

pn(x) =

n∑
k=0

bkx
k.

{1, x, . . . , xn} are not a good bases. This is similar to the Vandermonde issue. They are not
orthogonal. Can we construct an orthogonal basis?

5.4.3. Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization gives a way to construct an orthogonal basis {φ1, . . . , φn}
for a space given any basis {a1, . . . , an}. The process is as follows:

• Let φ1 = a1 .

• Then let φ2 = a2 − cφ1, so that 〈φ1, φ2〉 = 0. We calculate that

c =
〈φ1, a2〉
〈φ1, φ1〉

=⇒ φ2 = a2 −
〈φ1, a2〉
〈φ1, φ1〉

φ1 .

The algebra becomes simpler is φk is normalized at each step. Then 〈φk, φk〉 = 1.

• φ3 = a3 − c1φ1 − c2φ2.

φ3 = a3 −
〈φ1, a3〉
〈φ1, φ1〉

φ1 −
〈φ2, a3〉
〈φ2, φ2〉

φ2 .

29

Numerical Analysis 5.4. Working in the 2-norm Pramana

• For general φn,

φn = an −

(
n−1∑
i=1

〈φi, an〉
〈φi, φi〉

φi

)
(5.5)

Remark 5.19. We can simplify the algebra by normalizing φi to ψi, so that 〈ψi, ψi〉 = 1.
This will form an orthonormal basis. The formula for ψn becomes

ψn = an −

(
n−1∑
i=1

〈ψi, an〉ψi

)
.

Example 5.20 (Legendre polynomials) –March 8, 2023 With this method, consider the basis {1, . . . , xn} for
Pn on [−1, 1]. Let w(x) ≡ 1.

〈f, g〉 =
∫ 1

−1

f(x)g(x) dx.

φ1(x) = 1
φ2(x) = x− cφ1(x) such that

∫ 1

−1
x dx = 0 =⇒ c = 0

φ3(x) = x2 − c1φ1 − c2φ2 = x2 − 1
3
.

These are the Legendre polynomials. We can normalize these so that φm(1) = 1:

1, x,
1

2
(3x2 − 1), . . .

or normalize so that ‖φm‖ = 1:

1√
2
,

√
3

2
x,

√
5

4
(3x2 − 1), . . .

Example 5.21 (Chebyshev polynomials) – We look at a related problem: Find an orthogonal
basis for Pn on [−1, 1] with weight w(x) = 1√

1−x2
. Now we have

〈f, g〉 =
∫ 1

−1

1√
1− x2

f(x)g(x) dx.

Motivated by seeing the derivative of cos−1, we try using the Chebyshev polynomials: φn(x) =
Tn(x) = cos(n cos−1 x). Then (with the substitution x = cos θ =⇒ dx = −

√
1− x2dθ):

Am,n := 〈Tm, Tn〉

=

∫ 1

−1

1√
1− x2

cos(n cos−1 x) cos(m cos−1 x) dx

=

∫ 0

π

− cosnθ cosmθ dθ

=

∫ π

0

cosnθ cosmθ dθ

=
π

2
δm,n.

Thus, these polynomials are orthogonal w.r.t. this inner product.

Example 5.22 – Consider w = e−x on x ∈ [0,∞). Then

〈f, g〉 =
∫ ∞

0

e−xf(x)g(x) dx.

30

Numerical Analysis 5.4. Working in the 2-norm Pramana

We seek an orthogonal basis φ1, φ2, . . ., and an orthonormal basis ψ1(x), ψ2(x), . . . with the
same span as 1, x, x2,

• φ1(x) = 1.
ψ1(x) =

φ1(x)

‖φ1‖
= 1.

• φ2(x) = x− cψ1. We want

0 = 〈ψ1, x〉 − v 〈ψ1, ψ1〉 =⇒ c = 1.

We find ψ2(x) = x− 1 as well.
• φ3(x) = x2 − 4x+ 2, and ψ3 = 1

2
φ3.

March 10, 2023 Is there a pn ∈ Pn such that ‖f − pn‖2 = infq∈Pn
‖f − q‖2? It turns out there is. It is the

projection of f onto Pn. To show this is true, we need the following theorem:

Theorem 5.23 (Orthogonal decomposition theorem)
If V is a linear space, and S is a subspace, then any f ∈ V may be written as f = g+g⊥,
where g ∈ S, and g⊥ ∈ S⊥. In addition, ‖f‖2 = ‖g‖2 +

∥∥g⊥∥∥2.

Proof. Assume S has dimension n. Let {ψ1, . . . , ψn} be an orthonormal basis for S.

g =

n∑
i=1

〈f, ψi〉ψi

is the projection of f onto S. Let g⊥ = f − g. We need to show that g⊥ ∈ S⊥. Recall
that S⊥ is the set of all vectors that are perpendicular to vectors in S. We need to
show

〈
g⊥, ψj

〉
= 0 for j = 1, . . . , n:

〈
g⊥, ψj

〉
=

〈
f −

n∑
i=1

〈f, ψi〉ψi, ψj

〉

= 〈f, ψj〉 −
n∑

i=1

〈f, ψi〉 〈ψi, ψj〉

= 〈f, ψj〉 − 〈f, ψj〉 = 0.

Theorem 5.24 (Best approximation in the 2-norm)
The projection

g =

n∑
i=1

〈f, ψi〉ψi (5.6)

satisfies ‖f − g‖2 ≤ ‖f − h‖2 ,∀h ∈ S.

Proof. For all h ∈ S, we have

f − h = (f − g) + (g − h).

31

Numerical Analysis 5.4. Working in the 2-norm Pramana

Note that f − g ∈ S⊥, g − h ∈ S.

‖f − h‖2 = 〈f − h, f − h〉
= 〈f − g + g − h, f − g + g − h〉
= 〈f − g, f − g〉+ 2 〈f − g, g − h〉+ 〈g − h, g − h〉

= ‖f − g‖2 + ‖g − h‖2 .

This implies
‖f − h‖2 ≥ ‖f − g‖2 ,

as desired.

Now consider an orthogonal basis {ϕ1, . . . , ϕn}, such that 〈ϕi, ϕj〉 = Aiδi,j . In this case,
the projection is

g =

n∑
i=1

〈f, ϕi〉
‖ϕi‖2

ϕi. (5.7)

Example 5.25 (Orthogonal basis best 2-norm approximation) – LetS = Pn, x ∈ [−1, 1], w(x) =
1. Use the Legendre polynomials: {

1, x, x2 − 1

3
, . . .

}
,

which are an orthogonal basis. For f(x) = ex, the best approximation in P1 is

p1(x) =
〈f, 1〉
〈1, 1〉1 +

〈f, x〉
〈x, x〉x =

1

2
(e− e−1) +

3

e
x.

Remark 5.26 (Approximation in Fourier space). Another example of a linear space is
Fourier space. Here,

V = C[0, 2π], 〈f, g〉 =
∫ 2π

0

f(x)g(x) dx,

an orthonormal basis could be
1√
2π
,

1√
π
cosx,

1√
π
sinx,

1√
π
cos 2x,

1√
π
sin 2x, . . .

5.4.4. Quadrature, revisited

Newton-Cotes quadrature looks at equally spaced points to construct the interpolating
polynomial. There will be problems when the number of points gets large.

With our knowledge of approximating polynomials in the 2-norm, we put the quadrature
points at the Chebyshev nodes. This gives the Clenshaw-Curtis quadrature, which is very
good in practice.

We look at Gaussian quadrature. Consider a general n+1-point quadrature scheme with
points {x0, . . . , xn} and weights {w0, . . . , wn}. By construction, quadrature will integrate
polynomials in Pn exactly.

March 20, 2023 Recall Hermite approximation for f(x) is

p2n+1(x) =

n∑
k=0

Hk(x)f(xk) +

n∑
k=0

Kk(x)f
′(xk),

where
Hk(x) = [Lk(x)]

2(1− 2L′
k(xk)(x− xk)), Kk(x) = [Lk(x)]

2(x− xk).
32

Numerical Analysis 5.4. Working in the 2-norm Pramana

Where Lk is a Lagrange interpolant. Thus∫ b

a

w(x)f(x) dx ≈
∫ b

a

w(x)p2n+1(x) dx =

n∑
k=0

[wkf(xk) + vkf
′(xk)],

where
wk =

∫ b

a

w(x)Hk(x) dx, vk =

∫ b

a

w(x)Kk(x) dx.

Theorem 5.27 (Gaussian quadrature of polynomials)
There exists a choice of {xk} and {wk} such that we can integrate polynomials up to
degree 2n+ 1 exactly.

Proof. We want to try and choose our xk such that vk = 0. Let

Cn :=
1

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
,

which we will use to simplify the equation. We have

vk =

∫ b

a

w(x)[Lk(x)]
2(x− xk) dx

=

∫ b

a

w(x)Lk(x)
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)(x− xk)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
dx

= Cn

∫ b

a

w(x)Lk(x)πn+1(x) dx.

Let
{φ0, . . . , φn}

be an orothgonal basis of Pn w.r.t. w(x). Take πn+1(x) = φn+1(x). Set xk to be the
zeros of φn+1(x). Then

vk = Cn

∫ b

a

w(x)Lk(x)πn+1(x) dx

= Cn

∫ b

a

w(x)

 n∑
j=0

aj,kφj(x)

πn+1(x) dx

= 0.

Hence ∫ b

a

w(x)f(x) dx ≈
∫ b

a

p2n+1(x) dx =

n∑
k=0

wkf(xk) + 0.

Example 5.28 (Gaussian quadrature with weight function) – With x ∈ [−1, 1] and w(x) =
1√

1−x2
and n = 2, we have ∫ 1

−1

1√
1− x2

f(x) dx =

2∑
k=0

wkfk.

The orothogonal basis is given by the Chebyshev polynomials φn(x) = cos(n cos−1 x). The roots

33

Numerical Analysis 5.4. Working in the 2-norm Pramana

are where φ3(x) = 0. We find x0 = −
√
3

2
, x1 = 0, x2 =

√
3

2
, and w0 = w1 = w2 = π

3
.

Remark 5.29. We may have also applied Theorem 5.27 by a system of equations:∫ 1

−1

1 dx = w0 + w1 = 2,

∫ 1

−1

x dx = w0x0 + w1x1 = 0,

∫ 1

−1

x2 dx = w0x
2
0 + w1x

2
1 =

2

3
,

∫ 1

−1

x3 dx = w0x
3
0 + w1x

3
1 = 0.

34

Numerical Analysis 6. Piecewise polynomial interpolation Pramana

6. Piecewise polynomial interpolation

Lagrange/Hermite polynomial interpolation is global: there is one representation over the
whole interval. However, with many interpolation points, for example, we found that there
were issues with evaluation and/or unwanted oscillations. We try intead to approximate
with low order polynomials over many intervals. A spline is a degree k polynomial on each
subinterval that is differentiable k − 1 times.

6.1. Linear splines
A linear spline is defined by a set of knots K = {x0, . . . , xn}. The linear spline for this set
of knots is

sL(x) :=
xi − x

xi − xi−1
f(xi−1) +

x− xi−1

xi − xi−1
f(xi). (6.1)

for x ∈ [xi−1, xi], i = 1, . . . , n. We can bound the error on this spline easily when we
recognize that the equation for each interval is just a first order Lagrange interpolant.
Let hi := xi − xi−1 and h = maxi hi. If f ∈ C2[a, b], and we suppose x ∈ [xi−1, xi], there is a
ξ ∈ [xi−1, xi] so that:

f(x)− sL(x) =
f ′′(ξ)

2
π2(x) =⇒ ‖f(x)− sL(x)‖∞ ≤ 1

8
h2i f

′′(ξ).

So in general,
‖f(x)− sL(x)‖∞ ≤ 1

8
h2 ‖f ′′‖∞ .

Therfore, our linear splines give us an order 2 approximation to functions.

6.2. Cubic splines
Next we look at cubic splines using the same set of knots. Since each cubic requires 4
parameters, we have 4n constraints total. Suppose that we require the spline be in C2[a, b].

• The endpoints must match xi, xi−1. This adds 2n constraints.

• First derivatives must match at each interval boundary, so this adds n − 1 con-
straints.

• Second derivatives must match at each interval boundary, so This adds n − 1 con-
straints.

We are missing 2 constraints. We have several options to find those 2 missing constraints.
The natural spline requires

s′′(x0) = 0, s′′(xn) = 0. (6.2)

The not-a-knot spline requires

s
(3)
− (x1) = s

(3)
+ (x1), s

(3)
− (xn−1) = s

(3)
+ (xn−1). (6.3)

Anything that adds 2 constraints works.

Example 6.1 (Constructing a cubic spline) – Suppose we try and fit the points (0, 0), (1, 0), (2, 1).
We use a basis:
c0(x) = x2(3− 2x)
c1(x) = x2(1− x)
c2(x) = (x− 1)2x
c3(x) = 2x3 − 3x2 + 1.

35

Numerical Analysis 6.3. B-splines Pramana

These have the property c(k)1 (ck) = 1 and c(j)1 (ck) = 0 otherwise. We find that

s(x) =

{
0c0(x) + αc1(x) + βc2(x) + 0c3(x), x ∈ [0, 1)

c0(x− 1) + γc1(x− 1) + ηc2(x− 1) + 0c3(x). x ∈ [1, 2]

We can verify η = α. With the natural spline constraints:
s′′(0) = 0 : 0 = −2α− 4β

s′′(2) = 0 : 0 = −6 + 4γ + 2α

s′′(1) agrees from − and + : 4α+ 2β = 6− 4α−2γ

=⇒ α =
1

2
, γ =

5

4
, β = −1

4
.

6.3. B-splines
March 24, 2023 B-splines are basis functions for splines. We could have a basis {S1, S2, . . .} and model a

function as
∑

i γiSi. In particular, these are convenient for computers to calculate.
Assume the knots are evenly spaced: xk = kh. Define the positive part of the function

(x− a)n as

(x− a)n+ :=

{
(x− a)n x ≥ a

0 x < a.

This is a spline of degree n.

Lemma 6.2
Suppose that p(x) is a polynomial of degree n ≥ 1. Then for each 1 ≤ r ≤ n, the
function

Q(r)(x) =

r∑
k=0

(−1)k
(
r

k

)
p(x− kh)

is a polynomial of degree n− r and Q(n+1)(x) ≡ 0.

Proof. We induct on r. For r = 1,Q(1)(x) = p(x)−p(x−h). Therefore deg(Q(1)) = n−1.
Suppose deg(Q(r)(x)) is a polynomial of degree n− r. Then

deg(Q(r)(x)−Q(r)(x− h)) = n− r − 1.

Q(r)(x)−Q(r)(x− h) =

r∑
k=0

(−1)k [p(x− kh)− p(x− (k + 1)h)]

= p(x) + (−1)r+1p(x− (r + 1)h)

+

r∑
k=1

(−1)k
((

r

k

)
+

(
r

k − 1

))
p(x− kh)

=
r+1∑
k=0

(−1)k
(
r + 1

k

)
p(x− kh)

= Q(r+1)(x).

36

Numerical Analysis 6.3. B-splines Pramana

Theorem 6.3
For each n ≥ 1, the function S(n) defined by

S(n)(x) :=

n+1∑
k=0

(−1)k
(
n+ 1

k

)
(x− kh)n+

is a spline of degree n with equally spaced knots at kh, 0 ≤ k ≤ n. It is identically
zero outside of (0, (n+ 1)h).

Proof. If x < 0, the positive parts are all 0, so S(n)(x) = 0. If x > (n+ 1)h,

S(n)(x) =

n+1∑
k=0

(−1)k
(
n+ 1

k

)
(x− kh)n = Q(n+1)(x) = 0.

Example 6.4 (S(n) function) – For n = 1,

S(1)(x) =


x x ∈ (0, 1]

2− x x ∈ [1, 2)

0 otherwise

For n = 3, we can simplify the equation by centering it at 0:

S(3)(x+ 2) =


1
6
(|x| − 2)3 1 < |x| < 2

1
6
(4− 6|x|2 + 3|x|3) |x| ≤ 1

0 otherwise

37

Numerical Analysis 7. Numerical ODEs Pramana

7. Numerical ODEs

7.1. Ordinary differential equations
A first-order ODE for y(t) is {

y′ = f(t, y),

y(t0) = y0.
(7.1)

We call Equation 7.1 an initial value problem.

Example 7.1 (Examples of ODEs) – Many situations can be modeled by first-order ODEs:
• Population growth: y′ = ay, y(0) = y0 =⇒ y(t) = t0e

at.
• Predator-prey/Lotka-Volterra model: Let y = (y1︸︷︷︸

prey

, y2︸︷︷︸
predator

) and

y′ =

[
y′1
y′2

]
=

[
α1y1 − βy1y2

−α2y2 + β2y1y2

]

Definition 7.1 (Autonomous ODEs)
If an ODE is only dependent on y, i.e. in the formMarch 31, 2023

y′ = f(y),

it is called an autonomous ODE.

Why do we work a lot with only first-order ODEs? Consider Newton’s second law. For a
particle experiencing force

my′′ = F (t, y, y′).

Convert this into a system of first order ODEs. By introducing v = y′,{
y′ = v,

v′ = F (t,y,v)
m .

Therefore, higher order differential equations can be turned into first order systems. Re-
call some typical methods of getting an analytic solution:

1. If the ODE is linear, y′ = a(t)y + b(t), we can use the integrating factor method. We
place it in the form y′ − a(t)y = b(t). The integrating factor (IF) is I = e

∫
−a(t)dt. By

multipliying the IF on both sides, we have

Iy′ − Ia(t)y =
d

dx
(Iy) = Ib(t).

Therefore, by integrating on both sides,

y =

∫
I · b(t)dt
I

.

2. If y′(t) = f(t, y) = g(y)h(t), we can use separation of variables:

dy

dt

1

g(y)
= g(t) =⇒

∫
dy

g(y)
=

∫
h(t)dt.

38

Numerical Analysis 7.2. One-step methods Pramana

Example 7.2 (Toricelli’s law) – Suppose that y(t) is the height of a liquid in a container and
has an outflow at the bottom of said container. Toricelli’s law says that the rate of fluid output
is proportional to √

y. We have {
y′ = −k√y
y0 = H,

for t ∈ [0,∞). By separation of variables,

y(t) =
1

4
(2
√
H − kt)2.

Let T = 2
√
H/k.

It turns out there are multiple solutions on the range t ∈ (−∞, T] which are dependent on
a constant c we choose:

y(t) =

{
k2

4
(c− t)2 t < c

0 t ≥ c.

Theorem 7.3 (Picard’s theorem)
Suppose that f(x, y)For a proof of a

similar
statement to

this, see
Appendix A

is continuous in the rectangular region

D = [x0, Xm]× [y0 − c, y0 + c].

Suppose that |f(x, y0)| ≤ K when x ∈ [x0, Xm]. Suppose also that f satisfies the a
Lipschitz condition with parameter L > 0:

|f(x, u)− f(x, v)| ≤ L|u− v|, (x, u), (x, v) ∈ D.

Assume thatC ≥ K
L (eL(xM−x0)−1). Then there exists a unique function y ∈ C1[x0, Xm]

so that {
y′ = f(x, y)

y(x0) = y0.

In addition, |y(x)− y0| ≤ C for x0 ≤ x ≤ Xm.

April 3, 2023 For numerical solutions to our ODEs, we define mesh points xn = x0 +nh for 0 ≤ n ≤ N
with h = XM−x0

N . We want to find approximations to the solution so that yn ≈ y(xn). We
will use this notation as the standard for the rest of the section.

7.2. One-step methods
7.2.1. Euler’s method

Start with y(x0) = y0. Suppose we have approximated yn. Then we define

yn+1 = yn + hf(xn, yn). (7.2)

We call this the (forward) Euler method. To test its accuracy, we take the Taylor series:

y(xn + h) = y(xn) + hy′(xn) +O(h2)

= y(xn) + hf(xn, yn) +O(h2).

By taking y(xn) → yn and y(xn+1) → yn+1, we have Euler’s method.

39

Numerical Analysis 7.2. One-step methods Pramana

7.2.2. General cases

General one-step methods have the form

yn+1 = yn + hΦ(xn, yn;h).

Definition 7.2 (Global and truncation error)
There are two ways to track the error in these type of methods. The global error is
defined as

en := y(xn)− yn.

The truncation error is defined as

Tn :=
y(xn+1)− y(xn)

h
− Φ(xn, yn;h).

Definition 7.3 (Order of accuracy)
An ODE integration method has order of accuracy p if |Tn| = O(hp), where p is as
large as possible.

In Figure 5, we can see that the global error e2 not only has contributions from the trun-
cation error, but also from the error e1 from the first step. This may be a problem if we
want to converge to a solution to an ODE.

e1

e2

y(x)

y0 y1

y2

Figure 5: Accumulating error with Euler’s method.

40

Numerical Analysis 7.3. Implicit 1-step methods/Runge-Kutta methods Pramana

Theorem 7.4
Given a one-step method so that there exists LΦ > 0 so that for 0 ≤ h ≤ h0, and
(x, u), (x, v) ∈ D, where

D = [x0, XM]× [y0 − c, y0 + c],

we have
|Φ(x, u;h)− Φ(x, v;h)| ≤ LΦ|u− v|.

In other words, Φ satisfies a Lipschitz property in its second term. Assuming that
|yn − y0| ≤ C, we have for n = 1, . . . , N ,

|en| ≤
T

LΦ
(eLΦ(xn−x0) − 1).

Remark 7.5. This is exponential divergence! However, this bound is pessimistic. In
practice, our bounds may diverge much slower than exponentially.

I will give a sketch of the proof. The details should be easy to fill in.

1. Solve Tn for y(xn+1).

2. Subtract the equation yn+1 = yn + hΦ(xn, yn;h) to get en+1 in terms of en (and some
more terms).

3. Apply the Lipschitz condition to get a bound on |en+1| in terms of |en|, and show by
induction that you can get a bound on |en| in terms of T , LΦ, h, and n.

4. Use the bound 1 + hLΦ ≤ exp(hLφ) (by Taylor expansion) to get the theorem state-
ment.

7.3. Implicit 1-step methods/Runge-Kutta methods
April 7, 2023 For this topic, read Sections 12.4 (on implicit one-step methods) and 12.5 (on Runge-Kutta

methods).
Runge-Kutta methods rely on a predictor-corrector model with their calculations. While

using the derivative only to estimate the function is good, Runge-Kutta can keep in mind
more curvature to the function, which will likely end up in a better estimate.

Example 7.6 (Deriving a second-order RK method) – This is largely taken from the book,
but has some extra steps explained for clarity. We walk through a derviation of a second-order
Runge-Kutta method and give the necessary details to derive any higher-order method.

We first note the ways of expanding our terms with a Taylor series. For y, we have

y(x+ h) = y(x) + hy′(x) +
h2

2
y′′(x) + · · · .

We note that y′(xn) = f(xn, yn). By taking the derivative of f , we may write our y derivatives
purely in terms of f and its partial derivatives:

y′′(xn) = fx + fyy
′ = fx + fyf

y′′′(xn) = fxx + fxyf + (fxy + fyyf)f + fy(fx + fyf).

For notation, we will assume all f ’s (and partial derivatives) are evaluated at (xn, y(xn)). For

41

Numerical Analysis 7.3. Implicit 1-step methods/Runge-Kutta methods Pramana

f , we have to account for both directions,

f(x+ h, y + k) = f(x, y) + hfx(x, y) + kfy(x, y)

+
h2

2
fxx(x, y) +

hk

2
fxy(x, y) +

hk

2
fyx(x, y) +

k2

2
fyy(x, y) + · · · .

If we assume that fxy = fyx (which is the case most of the time), we can write

f(x+ h, y + k) = f(x, y) + hfx(x, y) + kfy(x, y)

+
h2

2
fxx(x, y) + hkfxy(x, y) +

k2

2
fyy(x, y) + · · · .

Let’s consider the method

k1 = f(xn, yn)

k2 = f(xn + αh, yn + βhk1)

yn+1 = yn + h(ak1 + bk2).

In this case, our Φ function is

Φ(xn, yn;h) = af(xn, yn) + bf(xn + αh, yn + βhk1).

Recall that our method is consistent if and only if Φ(x, y; 0) = f(x, y). This puts the constraint
a+ b = 1. By expanding our f ’s in Φ, we have

Φ(xn, y(xn);h) = af + b(f + αhfx + βhffy +
1

2
(αh)2fxx

+ αβh2ffxy +
1

2
(βh)2f2fyy +O(h3)).

Finally, we may consider the truncation error:

Tn = f +
1

2
h(fx + ffy)

+
1

6
h2[fxx + 2fxyf + fyyf

2 + fy(fx + fyf)]

− [af + b(f + αhfx + βhffy +
1

2
(αh)2)

+ αβh2ffxy +
1

2
(βh)2f2fyy] +O(h3)

By observing the h coefficient, we find that we need

bα = bβ =
1

2

for second-order accuracy, or

β = a, a = 1− 1

2α
, b =

1

2α
, α 6= 0.

α is a free parameter. The book goes over several ways that we can choose α.

April 10, 2023 An example not covered in the book of a second-order accurate RK method is Ralston’s
method. This uses α = 2

3 . We are motivated by trying to make
(
1
6 − α

4

)
,
(
1
3 − α

2

)
vanish.

We have the formula

yn+1 = yn +
h

4

[
f(xn + yn) + 3f(xn +

2

3
h, yn +

2

3
hf(xn, yn))

]
. (7.3)

The truncation error is
Tn =

h2

6
fy(fx + ffy) +O(h3).

42

Numerical Analysis 7.4. Linear multistep methods Pramana

Therefore, when f(x, y) is only dependent on x, fy is zero, and this method becomes third-
order accurate.

7.3.1. Butcher tableau

April 13, 2023 For a general RK method given by

ki = f

xn + hci, yn + h

i−1∑
j=1

ai,jkj


yn+1 = yn + h

s∑
j=1

bjkj

(7.4)

we can represent it by a Butcher tableau.
c1
c2 a2,1
...

...
. . .

cs as,1 · · · as,s−1

b1 · · · bs−1 bs

This gives us a concise way to write RK methods.

Example 7.7 – For the classical 4th order RK method, the corresponding Butcher tableau is

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

7.4. Linear multistep methods
The problem with RK methods is the number of evalutions of f we need to make. If y′ = f
is a complicated system, then we would like to make those evaluations minimal while still
having accuracy. A linear multistep method aims to do this.

Example 7.8 – We will introduce several linear multistep methods:
1. To find yn+1, we may use the values of f(xn−1) and f(xn) to interpolate a polynomial,

and integrate that polynomial to get the future value:

yn+1 = yn +

∫ xn+1

xn−1

p(x) dx

= yn + h

∫ 1

0

fn + s(fn − fn−1) ds

= yn + h

[
3

2
fn − 1

2
fn−1

]
,

where fn is f evaluated at xn, yn. We call this a Adams-Bashforth formula.
2. The Adams-Bashforth method is

yn+4 = yn+3 +
h

24
[55fn+3 − 59fn+2 + 37fn+1 − 9fn] .

43

Numerical Analysis 7.4. Linear multistep methods Pramana

3. The Implicit (backwards) Euler method is

yn+1 = yn + hf(xn+1, yn+1).

April 14, 2023 A general linear multistep method is of the form

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(xn+j , yn+j). (7.5)

An issue we see with linear multistep methods is that we need to start with some evalua-
tions of yn to begin to use it. For this we can use an RK method.

Definition 7.4 (Truncation error for linear multistep methods)
The truncation error of a linear multistep method given by Equation 7.5 isNote that, by

definition, we
need∑k

j=0 βj 6= 0. Tn :=

∑k
j=0[αjy(xn+j)− hβjf(xn+j , y(xn+j))]

h
∑k

j=0 βj
. (7.6)

Proposition 7.9 (Order of accuracy shortcut)
Let

C0 =

k∑
j=0

αj

C1 =

k∑
j=0

jαj −
k∑

j=0

βj

C2 =

k∑
j=0

j2

2
αj −

k∑
j=0

jβj

...

Cn =

k∑
j=0

jn

n!
αj −

k∑
j=0

jn−1

(n− 1)!
βj

A linear multistep method has order accuracy p if and only if C0 = C1 = · · · = Cp = 0
and Cp 6= 0.

There are several important conditions that we need to make sure a linear multistep
method satisfies for it to be reliable.

7.4.1. Zero-stability

Zero-stability is a measure of how much initial numerical errors will affect future ones.
In particular, we can find these by testing the method against y′ ≡ 0, hence the name
zero-stability.

44

Numerical Analysis 7.4. Linear multistep methods Pramana

Definition 7.5 (Zero-stability)
A linear k-step method is zero-stable if there is a constant K so that for any two
solution estimates (written as sequences) (yn), (zn) for initial values y0, . . . , yk−1 and
z0, . . . , zk−1 respectively satisfies

|yn − zn| ≤ K max
0≤i≤k−1

|yi − zi|.

Definition 7.6 (Characteristic polynomials)
Define the first and second characteristic polynomials of a linear multistep method as

ρ(z) :=

k∑
j=0

αjz
j , (7.7)

σ(z) :=

k∑
j=0

βjz
j . (7.8)

April 17, 2023 Instead of working with the zero-stability definition directly, we instead look at an equiv-
alent (and easier to verify) formulation.
Remark 7.10 (Motivation for the root condition). All we need to consider for zero-stability
is the differential equation y′ = f ≡ 0. Therefore, our multistep method will turn into

k∑
j=0

αjyn+j = 0.

If we fix our initial values y0, . . . , yk−1, this becomes a homogeneous recurrence relation,
and the zero condition is essentially asking when this blows up.

It turns out we have a general way of solving homogeneous recurrence relations where
we end up finding the roots of the first characteristic polynomial. For example, Binet’s
formula for the Fibonacci numbers is

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

.

Indeed, when we look at the characteristic polynomial of its recurrence relation, Fn+1 =
Fn + Fn−1, we find that the roots are

1±
√
5

2
,

which are the exponential terms in Binet’s formula. To solve homogeneous recurrence
relations in general, see Appendix C.

Theorem 7.11 (Root condition)
A linear multistep method is zero-stable if and only if all the roots of the first charac-
teristic polynomial have magnitude less than 1 or have magnitude 1 and have multi-
plicity 1.

45

Numerical Analysis 7.4. Linear multistep methods Pramana

Example 7.12 – Consider the linear multistep method

yn+3 − yn+2 =
h

24
(9fn+3 + 19fn+2 − 5fn+1 + fn).

The first characteristic polynomial becomes

ρ(z) = z2(z − 1).

The root z = 0 has multiplicity 2, which is fine because it has magnitude < 1. The root z = 1
has multiplicity 1 and magnitude 1. Thus, this method is zero-stable.

7.4.2. Consistency

Definition 7.7
A numerical method is consistent if the trunction error is so that for ε > 0, there
exists h0 = h0(ε) for which |Tn| < ε for 0 < h < h0,Therefore,

consistency
assumes that the

endpoints are
exactly solutions

to the differential
equation.

when plugging in the k + 1 points
(xn, y(xn)), . . . , (xn+k, y(xn+k)) that are solutions to the differential equation.

Proposition 7.13
A linear multistep method is consistent if and only if ρ(1) = 0 and ρ′(1) = σ(1) 6= 0.

Theorem 7.14 (Dahlquist’s equivalence theorem)
For a linear k-step method that is consistent with y′ = f(x, y) and y(x0) = y0, where
f satisfies the assumptions of Picard’s theorem, zero-stability is necessary and suffi-
cient for convergence. If y has continuous derivative of order p+1 and trunction error
O(hp), then the global error is also O(hp).

7.4.3. Stiff systems

April 21, 2023 The definition is stiffness is not entirely consistent in the literature, but we can say that
it happens when there are large variances in time steps of a differential equation.

Example 7.15 (Stiff system) – When a ball bounces on a table, the ball bounces much slower
in comparison to how the table bounces/shifts. We cannot even see the table “bounce” because
the time step is so small.

Stability problems may not show up for a while on a numerical solution, but when they
do, they can cause a lot of unpredictable behavior. In general, we prefer to use implicit
methods to explicit methods when it comes to stiff systems.

7.4.4. Stability

To work with stability, we look at testing our method against y′ = λy for different values
of λ. To test against y′ = λy, we use the stability polynomial, defined as

π(z;λh) :=

k∑
j=0

(αj − λhβj)z
j = ρ(z)− λhσ(z).

46

Numerical Analysis 7.5. Implicit Runge-Kutta methods Pramana

Definition
Consider a linear multistep method and its associated stability polynomial π(z;λh).

Definition 7.8 (Absolutely stable)
The method is absolutely stable for a given value of λh ∈ C if each root zr = zr(λh)
of the associated stability polynomial satisfies |zr(λh)| < 1.

Definition 7.9 (Region of absolute stability)
The region of absolute stability is the set of all points λh in C so that the method
is absolutely stable.

Definition 7.10 (A-stable)
A linear multistep is A-stable is the region of absolute stability contains the
region {λh : Re(λh) < 0} ⊆ C, or the left half of the complex plane.

A-stability is very hard condition to satisfy with linear multistep methods in practice,
as shown through the following theorem.

Theorem 7.16 (Dahlquist’s second barrier theorem)
• No explicit linear multistep method is A-stable,

• No A-stable linear multistep method has order > 2,

• The second-order A-stable linear multistep method with the smallest error is
the trapezoid method.

7.5. Implicit Runge-Kutta methods
Recall that the Butcher Tableau of a classical RK method is triangular. We can extend the
tableau to be square. In this case,

ki = f(xn, hci, yn + h

s∑
j=1

aijkj).

Since the sum ranges from 1 to s, this is an implicit Runge-Kutta method (IRK).
c1 a1,1 · · · a1,s
...

...
. . .

...
cs as,1 · · · as,s

b1 · · · bs

We may instead use a simpler version, called the diagonally implicit Runge-Kutta method
(DIRK), where we only have to solve for each ki in terms of itself and previous kj ’s. It has
the word diagonal because its Butcher Tableau includes the diagonal.

c1 a1,1
...

...
. . .

cs as,1 · · · as,s
b1 · · · bs

47

Numerical Analysis A. Proof of (a variant of) Picard’s theorem Pramana

I’ll be using this appendix for results not covered in class.

A. Proof of (a variant of) Picard’s theorem

Since this is taken from my analysis class, the exact wording of the theorem is not the
same.

Theorem A.1 (Picard’s theorem)
Suppose F is continuous on the rectangle

R := {(x, y) : |x− x0| ≤ a, |y − y0| ≤ b} ,

and
|F (x, y)− F (x, ỹ)| ≤ C|y − ỹ|,

such that
sup

x,y∈R
|F (x, y)| =M <∞.

For x ∈ [x0 − δ, x0 + δ], such thatWe will prove
that δ has a

better bound
later. δ < min

{
a,

b

M
,
1

C

}
.

a solution exists and is unique.

Proof. Assume that F is defined and continuous on

R = {(x, y) : x0 − a ≤ x ≤ x0 + a, y0 − b ≤ y ≤ y0 + b} .

We want to apply the contraction principle. We define the operator

Ty(x) := y0 +

∫ x

x0

F (t, y(t)) dt.

Thus the integral equation is y = Ty. Our metric space will be the set of all contin-
uous functions on [x0 − δ, x0 + δ] which have values in [y0 − b, y0 + b]. Let M be this
metric space, and equip it with the sup norm.
Claim A.1. T : M → M.

Let y ∈ M. Consider

|Ty(x)− y0| =
∣∣∣∣∫ x

x0

F (t, y(t)) dt

∣∣∣∣
≤M |x− x0|
≤Mδ.

By requiring δ < b
M , we are done. �

Claim A.2. M is complete.

Let
Mx := {f ∈ C[x0 − δ, x0 + δ] : |f(x)− y0| ≤ δ} .

48

Numerical Analysis A. Proof of (a variant of) Picard’s theorem Pramana

Each of these sets are clearly closed. Since

M =
⋂

x∈[x0−δ,x0+δ]

Mx,

M is closed, and therefore it is complete. �

Claim A.3. T is a contraction.

We will bound T to shown contraction.

d(Ty1, T y2) = sup
|x−x0|<δ

|Ty1(x)− Ty2(x)|

= sup
|x−x0|<δ

∣∣∣∣∫ x

x0

F (t, y1(t))− F (t, y2(t)) dt

∣∣∣∣
By the Lipschitz condition, we have

|F (t, y1(t))− F (t, y2(t))| ≤ C|y1(t)− y2(t)| ≤ Cd(y1, y2).

Thus

d(Ty1, T y2) ≤ sup
|x−x0|<δ

Cd(y1, y2)

≤ Cδd(y1, y2).

If we assume that δ < 1
C , then this is a contraction.

Proposition A.2
We can improve the bounds of δ in Theorem A.1 to

δ < min

{
a,

b

M

}
.

Proof. Let’s choose a different metric. For a large constant L, let

dL(f, g) := sup
|x−x0|<δ

|f(x)− g(x)|e−L|x−x0|.

Claim A.4. dL(Ty1, T y2) ≤ C
L dL(y1, y2).

dL(Ty1, T y2) = sup
|x−x0|<δ

|Ty1(x)− Ty2(x)|e−L|x−x0|

= e−L|x−x0| sup
|x−x0|<δ

∣∣∣∣∫ x

x0

F (t, y1(t))− F (t, y2(t)) dt

∣∣∣∣
≤ e−L|x−x0|

∫ x

x0

CdL(y1, y2)e
L|t−x0| dt

=
C

L
dL(y1, y2).

49

Numerical Analysis B. Singular value decomposition Pramana

B. Singular value decomposition

The singular value decomposition (SVD) is a very useful matrix factorization with many
applications in numerical linear algebra.

Consider them×nmatrixA : Rn → Rm. The SVD gives information that can be geomet-
rically interpreted as the image of the unit n − 1-sphere Sn−1 in Rn. We find that A ends
up “stretching” the unit sphere in Rm by σ1, . . . , σm in orthogonal directions u1, . . . ,um.

Definition B.1 (SVD terms)
The singular values are the “stretching” factors σ1 ≥ · · · ≥ σn ≥ 0. The left singular
values {u1, . . . ,um} in the direction of the principal semiaxes of Aim(Sn−1). The right
singular values {v1, . . . ,vm} are the preimages of the left singular values so thatAvi =
σiui.

Given our matrix A ∈ Rm×n, we write

AV = Û Σ̂,

where V ∈ Rn×n is an orthogonal matrix, Û ∈ Rm×n has orthonormal columns, and Σ̂ ∈
Rn×n is diagonal with non-negative real entries, and contains our singular values.

Definition B.2 (Reduced and full SVD)
Using the fact that V is orthogonal, we have V TV = V V T = I. Thus

A = Û Σ̂V T (B.1)

is called the reduced SVD.
We may use an alternative form of the SVD called the full SVD. We add m − n

more orthonormal vectors as columns to Û to form U , a square matrix. To negate
the effects of this, we add m − n rows of zeros to Σ̂ to form Σ, a m × n matrix. Our
equation becomes

A = UΣV T . (B.2)

For a geometric intuition, consider how UΣV T maps Sn−1. V T preserves the sphere, but
can rotate it. Σ stretches the sphere, and U does the final rotation for the sphere.

B.1. Properties of the SVD
For the SVD to be useful, we want to know when a SVD can be formed, and if decomposi-
tions are unique to the matrix. The next theorem covers this.

Theorem B.1
A ∈ Rm×n has a full singular value decomposition. Additionally,

• The {σj} are uniquely determined by A.

• If A is square, and the {σj} are distinct, then {uj} and {vj} are uniquely deter-
mined up to sign.

50

Numerical Analysis C. Solving homogeneous recurrence relations Pramana

Proposition B.2 (Additional properties of the SVD)
• rankA = r is the number of nonzero singular values.

• rangeA = span {u1, . . . ,ur}.

• nullA = span {vr+1, . . . ,vn}.

• The matrix norm induced by the euclidean norm satisfies ‖A‖2 = σ1. As a
result, κ(A) = σ1/σn.

• The singular values of A are the square roots of the eigenvalues of ATA.

Proposition B.3 (Using SVD to find pseudoinverse)
Define the pseudoinverse of a scalar σ as 1

σ , or 0 if σ = 0. By defining the pseudoin-
verse of a diagonal matrix as the transpose and pseudoinverse of each entry, we have
the formula

A+ := V Σ+UT . (B.3)
This can be used in the same ways that the pseudoinverse has been used previously.

C. Solving homogeneous recurrence relations

Definition C.1
We are trying to solve linear recurrence relations. These are of the form

k∑
j=0

ajhn+j + bn = 0 ⇐⇒ hn+k = − 1

ak

k−1∑
j=0

ajhn+j + bn


If ai independent of n, then we have constant coefficients. When bn = 0, we are
working with a homogeneous recurrence.

Consider a sequence that has both constant coefficients and is homogeneous. When
solving these, we need the initial conditions h0, . . . , hk−1.

Definition C.2
The characteristic polynomial of a recurrence relation is what happens when we plug
in hn = zn. In other words,

p(z) =

k∑
j=0

ajz
j .

Example C.1 (Solving with characteristic polynomial) – Solve

hn = 3hn−1 + 4hn−2 − 12hn−3, h0 = 5, h1 = −11, h2 = 15

The characteristic polynomial is

p(z) = z3 − 3z2 − 4z + 12 = (z − 2)(z + 2)(z − 3).

51

Numerical Analysis References Pramana

Therefore the roots are z = −2, 2, 3. Now for a, b, c ∈ R,

hn = a2n + b(−2)n + c3n.

Solving this we get that a = 1, b = 5, c = −1, so

hn = 2n + 5(−2)n − 3n.

The above method always works as long as the roots of the characteristic polynomial are
distinct. Otherwise,

Example C.2 (Root multiplicity in characteristic polynomial) – Solve

hn = 6hn−1 − 12hn−2 + 8hn−3.

h0 = 5, h1 = 0, h2 = −12.
p(z) = (z − 2)3.

Here, the roots are 2, 2, 2. There are 3 linearly independent solutions, hn = 2n, hn = n2n,hn =
n22n. We can check that these satisfy the recurrence. For a, b, c ∈ R,

hn = a2n + bn2n + cn22n.

We find that a = 5, b = −6, c = 1.

References

[SM03] Endre Süli and David F. Mayers. An Introduction to Numerical Analysis. Cam-
bridge University Press, 2003. doi: 10.1017/CBO9780511801181.

52

https://doi.org/10.1017/CBO9780511801181

	Introduction
	Error analysis
	Sources of error
	Error definitions

	Iterative solutions
	Root-finding
	Determining convergence of iterative solutions
	Newton's method
	Bisection method
	Convergence rates
	Application: Convergence of Newton's method

	Polynomial interpolation
	Condition number
	Scalar functions
	Matrix multiplication

	Floating-point arithmetic
	Polynomial interpolation with matrices
	Changing the basis

	Hermite interpolation
	Linear least squares
	Non-polynomial least squares fitting
	Pseudoinverse matrix
	Undetermined least squares

	Calculus
	Differentiation: Finite difference approximation
	General procedures: Taylor series
	General procedures: Lagrange interpolant

	Integration: Quadrature schemes
	Composite quadrature schemes
	Error analysis of integration techniques

	Polynomial approximation
	Function space norms
	Minimizing the infinity norm for polynomials
	Chevyshev polynomials
	Using Chebyshev polynomials in Lagrange interpolation

	Working in the 2-norm
	Inner product spaces
	Best approximation in the 2-norm
	Gram-Schmidt orthogonalization
	Quadrature, revisited

	Piecewise polynomial interpolation
	Linear splines
	Cubic splines
	B-splines

	Numerical ODEs
	Ordinary differential equations
	One-step methods
	Euler's method
	General cases

	Implicit 1-step methods/Runge-Kutta methods
	Butcher tableau

	Linear multistep methods
	Zero-stability
	Consistency
	Stiff systems
	Stability

	Implicit Runge-Kutta methods

	Proof of (a variant of) Picard's theorem
	Singular value decomposition
	Properties of the SVD

	Solving homogeneous recurrence relations

