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Abstract
This is an expository paper on the prerequisites for Gårding’s inequality.

Proposed in [GÅ53] by Lars Gårding, this inequality has applications in the
study of weak solutions to elliptic partial differential equations.

This will begin by introducing Lebesgue integration, a stronger form of
Riemann integration, and continue into function spaces, specifically Lp and
Sobolev spaces. Then we will discuss differential operators. Finally, we will
state Gårding’s inequality and give one application. Discussion of applica-
tions is adapted from [RR04].
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1.3 The Lebesgue integral 1 Lebesgue integration

1 Lebesgue integration

1.1 A motivating example
The typical Riemann integration we use works for many functions, but
not for all. Consider the Dirichlet function

1Q =

{
1 if x ∈ Q
0 if x /∈ Q,

(1)

on the interval [0, 1]. Since rationals and irrationals are dense in the re-
als, all upper Darboux sums will come out to 1, and all lower Darboux
sums will come out to 0. We conclude that the function is not Riemann
integrable. The Lebesgue integral seeks to give a larger space of integrable
functions, including Equation 1.

1.2 The Lebesgue outer measure
This definition comes from Prof. Rycroft and [nLa22].

Definition 1.1. For an open interval I = (a, b), let |I| = b − a. The
Lebesgue outer measure for a subset E of the real numbers, denoted
λ(E), is defined as

λ(E) := inf

{
∞∑
j=1

|Ij| : (Ij)j∈N such that B ⊆
∞⋃
i=1

Ij

}
.

Sets used in the Lebesgue integralmust satisfy theCathédory criterion:

λ(B) = λ(A ∩B) + λ(A ∩BC), for all A ⊆ R.

1.3 The Lebesgue integral
While Riemann integrals start with splitting the domain into smaller and
smaller intervals, the Lebesgue integral splits the range into smaller and
smaller intervals.

Formally, we define indicator functions as

1S(x) =

{
1 if x ∈ S

0 if x /∈ S.

Then we can create simple function in terms of sums of these indicator
functions and for subsets Si ⊆ R,

s(x) =
∑
n

an1Sn .

For this simple function, we can define an integral as∫
sdλ =

∑
n

λ(Sn)an.



2 The Lp space of functions 2.2 The Lp space and norm

Definition 1.2. Given that a function is non-negative, we then define the
Lebesgue integral as∫

fdλ := sup

{∫
sdλ : 0 ≤ s ≤ f, s is a simple function

}
.

If we want to deal with functions with positive and negative ranges, then
we can just apply the Lebesgue integral to each part separately.

Example 1.3. For the Dirichlet function,∫ 1

0

1Q(x)dλ(x) = λ([0, 1] ∩Q) · 1 + λ([0, 1] \Q) · 0

= 0 · 1 + 1 · 0
= 0.

This matches with out intuition of the “amount” of rationals compared
to irrationals on the interval [0, 1]. □

Theorem 1.4. Functions that are Riemann-integrable on a closed interval are
Lebesgue-integrable.

2 The Lp space of functions

2.1 Normed vector spaces
Definition 2.1. A norm is a way of formalizing “length” in certain spaces.
It is denoted ∥·∥. There are 4 properties a norm must satisfy:

1. ∥x∥ ≥ 0.

2. ∥x∥ = 0 =⇒ x = 0.

3. For a scalar α, ∥αx∥ = |α| ∥x∥.

4. The triangle inequality holds: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

A vector space equipped with a norm is a normed vector space. We
also have an induced distance function by the norm, d(x, y) = ∥y − x∥.
Therefore, a normed space automatically a metric space.

2.2 The Lp space and norm
Definition 2.2. The Lebesgue space (Lp space) is the space of functions
from a set that can be assigned a Lebesgue measure Ω ⊆ Rn to R or C
such that the following norm converges:

∥f∥Lp :=

(∫
Ω

|f |p dµ
) 1

p

We call this the Lp norm of f . The Lp space of functions f : Ω → R is
denoted Lp(Ω).



3.1 Weak differentiation 3 Sobolev spaces of functions

Remark 2.1. Most of the
norm properties are
immediately satisfied,
except for the triangle
inequality,
∥x+ y∥ ≤ ∥x∥+ ∥y∥,
which follows from
Minkowski’s inequality.

Proposition 2.3. The Lebesgue space is a vector space, with

(f + g)(x) = f(x) + g(x) ∈ Lp

(λf)(x) = λf(x) ∈ Lp

2.3 Bilinear forms and inner products
Definition 2.4. A bilinear form on a vector space V is a function B[·, ·] :
V × V → K K is the field which V is

a vector space over.
UsuallyK is R or C.

such that ⟨x, y⟩ is linear in x and y. In symbols,

B[ax1 + bx2, y] = a ·B[x1, y] + b ·B[x2, y],

B[x, ay1 + by2] = a ·B[x, y1] + b ·B[x, y2].

Definition 2.5. An inner product is an bilinear form ⟨·, ·⟩ such that

1. ⟨ax1 + bx2, y⟩ = a ⟨x1, y⟩+b ⟨x2, y⟩, ⟨x, ay1 + by2⟩ = a ⟨x, y1⟩+b ⟨x, y2⟩.

Remark 2.2. The complex
conjugate is not useful in
R, but if the function is
mapping to C, it is
commonly called a
Hermitian inner product,
and it makes use of the
complex conjugate.

2. Reflexive: ⟨y, x⟩ = ⟨x, y⟩, where z denotes the complex conjugate of z.

3. Positive Definite: ⟨x, x⟩ = 0 if x = 0, and ⟨x, x⟩ > 0 if x ̸= 0.

A vector space equippedwith an inner product is an inner product space.

Example 2.6. L2 has an induced inner product with respect to a measure
µ:

⟨f, g⟩L2 =

∫
Ω

fgdµ.

In fact, L2 is the only Lp space with this property.
Remark 2.3. The inner
product induces a norm,
which therefore induces
a metric.

∥x∥ =
√
⟨x, x⟩.

d(x, y) =
√
⟨x− y, x− y⟩.

3 Sobolev spaces of functions

3.1 Weak differentiation
LetΩ be an open, connected subset ofR. Let ϕ be a differentiable function
on [a, b] such that ϕ(a) = ϕ(b) = 0. Then by integration by parts,∫ b

a

fϕ′dx = [f(x)ϕ(x)]ba −
∫ b

a

f ′ϕdx = −
∫ b

a

f ′ϕdx.

Even when f ′ does not exist, we may be able to show that some function
can take the place of f ′. To generalize, let Ω be an open, connected subset
of Rn (we call this a domain). If there exists a function gi such that∫

Ω

f∂iϕdx = −
∫
Ω

giϕdx,

for all ϕ that are continuous, smooth (infinitely differentiable), and the
set of all values x such that ϕ(x) ̸= 0 is compact, then define the weak
derivative as ∂if := gi.



4 Differential Operators 4.1 Elliptic operators

Definition 3.1. Amulti-index is shorthand for writing partial derivatives.
Amulti-index α is a tuple of numbers that correspond to howmany times
each dimension is partially differentiated. |α| gives the order of the partial
derivative.

For higher weak derivatives, if the integrable function u has∫
Ω

u∂αϕ = (−1)|α|
∫
Ω

vϕ,

for some integrable function v, and for all ϕ as defined before, then it is
α-times weakly differentiable.

3.2 Sobolev spaces
Definition 3.2. For a domain Ω in Rn, the Sobolev space W k,p(Ω) is the
space of functions f ∈ Lp(Ω) that are weakly differentiable up to k times.

Remark 3.1. When p = 2,
the Sobolev space may be
written as Hk(Ω). Since
Hk(Ω) ⊆ L2(Ω), there
exists an induced inner
product on Hk(Ω). This
is an example of aHilbert
space, which is an inner
product space that is a
complete metric space.

Moreover, we require that each of the derivatives also has a finiteLp norm
and be continuous.

Sobolev spaces admit the norm

∥f∥Wk,p :=

(
k∑

i=0

∥∥f (i)
∥∥p
Lp

) 1
p

=

(
k∑

i=0

∫ ∣∣f (i)(t)
∣∣p dt

) 1
p

.

3.3 The k-extension property
While there is a general definition for topological vector spaces, we ex-
amine the specific definition for X, Y as normed vector spaces.

Definition 3.3. A linear operator L : X → Y is bounded if there exists
M > 0 such that for all x ∈ X ,

∥Lx∥Y ≤ M ∥x∥X .

Definition 3.4. If there exists a bounded linear operator E : W k,2(Ω) →
W k,2(Rn) such that Eu with its domain restricted to Ω equals u for all
functions u in W k,2(Ω), then Ω satisfies the k-extension property.

The k-extension property is a classification of domains that is a neces-
sity for Gårding’s inequality and many other results in PDE analysis.

4 Differential Operators

4.1 Elliptic operators
Definition 4.1. Let α represent a multi-index. Let L be a partial differen-
tial operator, defined for a function uwith domain Ω in Rn.

Lu =
∑
|α|≤m

aα(x)∂
αu.



5.1 Inequality statement 5 Gårding’s inequality

L is elliptic if for every x ∈ Ω and every non-zero ξ ∈ Rn,

(−1)k
∑

|α|=2k

aα(x)ξ
α > 0

It can be shown that the order of the PDE must be even to be elliptic
(m = 2k). We then make a stronger condition, uniform ellipticity, for
an operator of order 2k:

(−1)k
∑

|α|=2k

aα(x)ξ
α > C |ξ|2k .

for a positive constant C and for every ξ ∈ Rn.

4.2 Induced bilinear forms
Differential operators induce their own bilinear form. In order to con-
struct a bilinear form for a differential operator L, we perform integration
by parts on L: ∫

Ω

ϕLudx =
∑

0≤|σ|,|γ|≤k

∫
Ω

aσγ(x)∂
γu∂σϕdx,

for mutli-indices γ and σ. We define the induced bilinear form by L as

B[u, v] :=
∑

0≤|σ|,|γ|≤k

∫
Ω

aσγ(x)∂
γu∂σvdx

5 Gårding’s inequality

5.1 Inequality statement
Theorem 5.1 (Gårding’s inequality). Let Ω ⊆ Rn be a bounded domain that
has the k-extension property. Let u be a function in W k,2(Ω) and L be a uni-
formly elliptic differential operator of order 2k, written as

(Lu)(x) =
∑

0≤|α|,|β|≤k

(−1)|α|∂α
(
Aαβ(x)∂

βu(x)
)
.

If |α| = |β| = k, then require Aαβ to be bounded and continuous on the closure
of Ω. If |α| , |β| ≤ k, then require Aαβ ∈ L∞(Ω). If all of the above are satisfied,
then there exists constants C > 0 and G ≥ 0 such that

B[u, u] +G∥u∥2L2 ≥ C∥u∥2Wk,2 for all u ∈ W k,2
0 (Ω),

whereB[u, v] is a bilinear form induced by the differential operatorL, andW k,2
0 (Ω)

is the space of functions u ∈ W k,2(Ω) such that u evaluates to 0 on the boundary
of Ω.

Gårding’s inequality relates the L2 and Sobolev norm of a function u
with the induced bilinear form of a uniformly elliptic differential opera-
tor.



5 Gårding’s inequality 5.2 Application: A Dirichlet boundary problem

5.2 Application: A Dirichlet boundary problem
A Dirichlet boundary problem is a common type of elliptic boundary-
value problem. Consider a bounded region Ω ⊆ Rn, a function f , and
an elliptic operator L of order 2k. The solution to a Dirichlet boundary
problem we will be studying is a function u(x, y) that satisfies{

Lu = f in Ω

u = 0 on ∂Ω.

Here ∂Ω denotes the boundary of Ω: the closure minus the interior of a
set.

There are three levels of solutions to the Dirichlet problem to discuss.
First are the classical solutions, which require the function u to be contin-
uous, 2k times differentiable, and all of its derivatives to also be continu-
ous.

Lightening our criterion to allow for weak derivatives, there are strong
solutions, which loosen the requirement of u to being ∼ 2k times weakly
differentiable.

Finally, u is aweak solution of thisDirichlet problem ifB[v, u] =
∫
Ω
fvdx

for every v ∈ W k,2
0 (Ω). Even fewer weak derivatives are required, effec-

tively reducing the “smoothness” needed for a function to be considered
a solution.

As a general hierarchy,

{classical sol’ns} ⊆ {strong sol’ns} ⊆ {weak sol’ns} .

Since our classification of weak solutions to the boundary problem re-
quires the induced bilinear form B, it should be clear that the Gårding
inequality is useful here. Indeed, the Gårding inequality is used to show
the existence of weak solutions to this Dirichlet problem.

Theorem 5.2. Let L be a differential operator of order 2k that satisfies the condi-
tions of 5.1. Then there exists λ ≥ 0 such that for λ0 ≥ λ, the Dirichlet problem
for the operator L+ λ0 has a unique weak solution.

Remark 5.1. The proof for 5.2 requires both theGårding inequality and the
Lax–Milgram lemma, a result that guarantees the existence of uniqueweak
solutions to the Dirichlet problem. This result was proven in [LM55].
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