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§1 September 8th, 2022
Office hours: Tuesday 9-10PM (Zoom), Thursday 2:30-3:30PM (in-person), 725
Van Vleck.

§1.1 The natural numbers

Axiom 1.1 (Peano axioms)
The Peano axioms are:

N1. 1 ∈ N.

N2. If n ∈ N then its successor n+ 1 ∈ N.

N3. 1 is not the successor of any element in N.

N4. If n and m have the same successor, then n = m.

N5. A subset of N which contains 1, and n+1 whenever it contains n must
equal to N.

Claim 1.2 — N5 is necessary.

Proof. Suppose that N5 is false. Then ∃S ⊂ N s.t. 1 ∈ S, and if n ∈ S =⇒
n+ 1 ∈ S, but S 6= N. Now consider the set T :

T = {n ∈ N | n /∈ S} ,

call n0 the smallest number in T . Since n0 6= 1, n0 is the successor to some n0−1,
but n0 − 1 ∈ S, since it is smaller than n0. But its successor is in S too. �

§1.2 Addition and multiplication in the rationals
We need a set F with a group structure.

A0 ∀a, b, a+ b ∈ F

A1 a+ (b+ c) = (a+ b) + c∀a, b, c

A2 a+ b = b+ a

A3 a+ 0 = a

A4 ∀a, ∃ − a s.t. a+ (−a) = 0.

This suffices for a commutative group. Then the multiplication properties:

M0 A0 for ×

M1 A1 for ×
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M2 A2 for ×

M3 a · 1 = a

M4 ∀a 6= 0∃a−1s.t.aa−1 = 1.

Along with the distributive law: a(b+ c) = ab+ ac creates a field structure. For
example, Q, the set of rational numbers is a field.

§1.2.1 Finding the squareroot 2

If we want a number d s.t. d · d = 2. In Q we can get close...

1.41422 = 1.99996164 . . .

1.41432 = 2.00024449 . . .

however it isn’t possible, since

Claim 1.3 —
√
2 is not rational.

Proof. Suppose
√
2 = p

q , p ∈ Z, q ∈ N and (p, q) = 1.

√
2 =

p

q

2 =
p2

q2

2q2 = p2,

which implies that p is even. Then p = 2k for some k ∈ Z. This means that
2k2 = q2, so then q is even as well. But that contradicts the assumption that
(p, q) = 1. �

Definition 1.4. A number is algebraic if it satisfies a polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ai ∈ Z, an 6= 0, n ≥ 1.

√
2 satisfies x2 − 2 = 0, therefore it is algebraic.
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§2 September 13th, 2022
§2.1 Rational zeros theorem

Theorem 2.1 (Rational zeros theorem)
If r = p

q , where (p, q) = 1, and q 6= 0, and r satisfies a polynomial, then
q | an and p | a0.

Proof. Substitute in the solution p
q :

an

(
p

q

)n

+ an−1

(
p

q

)n−1

+ · · ·+ a0 = 0

anp
n + an−1p

n−1q + · · ·+ a0q
n = 0

anp
n = −q [· · · ]︸︷︷︸

integer

Since (p, q) = 1, we know that q | an. Similarly,

a0q
n = −p [· · · ]︸︷︷︸

integer

.

Example 2.2 (Golden ratio). The polynomial with the golden ratio as a root is
f(x) = x2 − x− 1. Can the golden ratio be rational? If so, then r = p

q and p | a0
and q | an, or q | 1, p | 1. So p = ±1, q = ±1, or r = ±1. We verify none satisfy f ,
so the golden ratio is not rational.

§2.2 Order structure

Axiom 2.3 (Order axioms)
We create an order on the set “≤ / ≥” such that ∀a, b, c ∈ F ,

O1 Either a ≥ b or b ≥ a.

O2 If a ≥ b and b ≥ a, then a = b.

O3 If a ≤ b and b ≤ c, then a ≤ c.

O4 If a ≤ b, then a+ c ≤ b+ c.

O5 If a ≤ b and 0 ≤ c, then ac ≤ bc.

We let a < b be defined as a ≤ b and a 6= b.
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Example 2.4 (Axiom results). We can use these axioms to prove things we take for
granted in ordered fields.

1. a+ c = b+ c =⇒ a = b.
Using A4, ∃(−c) s.t. c+ (−c) = 0

a+ c+ (−c) = b+ c+ (−c)

a+ (c+ (−c)) = b+ (c+ (−c))

a+ 0 = b+ 0

a = b

2. a · 0 = 0.

a · 0 = a · (0 + 0) (A3)
= a · 0 + a · 0 (DL)

0 = a · 0.

3. (−a)b = −ab.

a+ (−a) = 0

ab+ (−a)b = (a+ (−a))b (DL)
= 0 · b
= 0

(−a)b = −ab

4. (−a)(−b) = ab

(−a)(−b) + (−ab) = (−a)(−b) + (−a)b

= (−a)(−b+ b) (DL)
= (−a)(0)

= 0

Since ab+ (−ab) = 0, then (−a)(−b) = ab.

5. If 0 < a, then 0 < a−1.
Suppose that 0 < a, but a−1 ≤ 0. Then

(a−1) + (−a−1) ≤ 0 + (−a−1) (O4)
−a−1 ≥ 0

Then 0 ≤ a and 0 ≤ −a−1

0 ≤ a · −a−1 = −1

0 ≤ −1,

contradiction.

Absolute value is defined how you would expect. Note that |a| ≥ 0, |ab| =
|a| |b|.
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Theorem 2.5 (Triangle inequality)
If a = A−B, and b = B − C,

|a+ b| = |A− C| =⇒ |A− C| ≤ |A−B|+ |B − C| ,

or
dist(A,C) ≤ dist(A,B) + dist(B,C).

Proof.
− |a| ≤ a ≤ |a| , − |b| ≤ b ≤ |b| ,

implies
− |a| − |b| ≤ − |a|+ b ≤ a+ b ≤ |a|+ b ≤ |a|+ |b| ,

so
− |a| − |b| ≤ a+ b ≤ |a|+ |b| =⇒ |a+ b| ≤ |a|+ |b| .

§2.3 Intervals
Definition 2.6. Let S be non-empty subset of R. If there exists s0 ∈ S such that
s ≤ s0 for all s ∈ S, then s0 is called the maximum of S, denoted s0 = maxS.
Similarly, the smallest element it is the minimum of S, denoted minS.

Definition 2.7. Finite subsets always have a maximum and minimum. Suppose
a < b. Then the open interval between a and b is

(a, b) = {x ∈ R | a < x < b} .

The closed interval is

[a, b] = {x ∈ R | a ≤ x ≤ b} .

A semi-open interval is (a, b].

Note that min[a, b] = a, max[a, b] = b.

Proposition 2.8 (Open intervals have no max nor min)
The open interval (a, b) does not have a maximum nor minimum.

Proof. For an interval (0, 1), suppose that λ = max(0, 1). So λ ≥ x and 1 > x
∀x ∈ (0, 1). Consider 1 > λ+1

2 > λ, so we have found a higher ”maximum”.
Similar argument for no minimum, and works for any open interval (a, b).
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§3 September 15th, 2022
§3.1 Least upper bound and greatest lower bound
Definition 3.1. S is bounded (above) if ∃x s.t. x ≥ s ∀s ∈ S.

Definition 3.2. Let S be a non-empty subset of R. If S is bounded above and
S has a least upper bound, then we call it the supremum of S, supS.
If S is bounded below and S has a greatest lower bound, then we call it the
infimum of S, inf S.

Note that if maxS exists, then maxS = supS. Also, sup[a, b] = sup(a, b) =
b.

Example 3.3 (Sample sup/inf proof). sup(0, 1) = 1. 1 ≥ x for x ∈ (0, 1). Suppose
that t is an upper bound, for (0, 1) and t < 1. Consider x = 1+t

2 , then x ∈ (0, 1),
but x > t.

§3.2 The real numbers

Axiom 3.4 (Completeness axiom)
Every non-empty subset S of R that is bounded above has supS ∈ R.

Corollary 3.5 (Completeness axiom below)
Every non-empty subset S of R that is bounded below has a greatest lower
bound inf S.

Proof. Define −S = {−s | s ∈ S}. Since S is bounded below, ∃m ∈ R s.t.
m ≤ s ∀s ∈ S. Then −m ≥ −s ∀s ∈ S. Therefore, −m ≥ u ∀u ∈ −S, showing
the existence of sup−S.

I claim inf S = −s0.

• First we show that s0 is a lower bound. For all s ∈ S, −s ∈ −S, so

−s ≤ s0 =⇒ s ≥ −s0.

• Then we show for any other lower bound t, t ≤ −s0. This implies that
−t ≥ −s ∀s ∈ S, or −t ≥ x∀x ∈ −S, so −t is an upper bound for −S. So

−t ≥ sup(−S) = s0 =⇒ −t ≥ s0 =⇒ t ≤ −s0.

Thus, inf S = −s0.
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Proposition 3.6 (Archimedian property)
If a > 0 and b > 0, then ∃n ∈ N s.t. na > b.

Proof. (intuitive) a bathtub and a spoon

Proof. Assume that it fails. So ∃a > 0, b > 0 such that b is an upper bound
for the set S = {an | n ∈ N}. Let s0 = supS, which must exist by the Axiom
of completeness. a > 0 =⇒ s0 − a < s0. Since s0 is the least upper bound,
s0 − a can’t be an upper bound. Meaning there is some n0 ∈ N s.t. s0 − a < n0a.
Therefore, s0 < (n0 + 1)a, but (n0 + 1)a ∈ S, so s0 is not an upper bound.

Proposition 3.7 (Denseness of Q)
If a, b ∈ R, ∃r ∈ Q s.t. a < r < b.

Proof. Show there is a < m
n < b for m,n ∈ Z, n 6= 0 ⇐⇒ na < m < nb. We

have that b− a > 0, so proposition 3.6 says that ∃n s.t. n(b− a) > 1. So ∃k ∈ N
s.t. k > max {|an| , |bn|}, so that

−k < an < bn < k.

Consider S = {j ∈ Z | −k ≤ j ≤ k, an < j}, and look at m = minS. So m− 1 ≤
an and

m = (m− 1) + 1 ≤ an+ 1 < an+ (bn+ an) = bn.

§3.3 Infinity
∞ and −∞ are useful symbols, but they are not in R. We can extend ordering
to R ∪ {−∞,∞} by saying −∞ ≤ a ≤ ∞ ∀a ∈ R.

Example 3.8 (Unbounded intervals). Consider

[a,∞) = {x ∈ R | a ≤ x}

(a,∞) = {x ∈ R | a < x} .

Moreover, supS = ∞ if S is not bounded above, and inf S = −∞ is S is not
bounded below.

§3.4 Sequences and convergence
Definition 3.9. A sequence is a function from {n ∈ Z | n ≥ m} to R. Usually
m = 0, 1. We denote sequences as

(s1, s2, . . . ) or (sn)n∈N.

10



Pramana (Fall 2022) MATH 521 - Analysis I Notes

Definition 3.10. sn converges to s if ∀ε > 0, ∃N such that n > N =⇒
|sn − s| < ε. If this is satisfied, write

lim
n→∞

sn = s.

N can be forced to be an integer. ε can be any positive real number, but typically
we use it for cases where it is small.

Proposition 3.11
Limits are unique.

Proof. Suppose an → a and an → b, but b 6= a. WLOG a < b, let d = b− a. Let
ε = d

3 . Thus, ∃N1 s.t. ∀n > N1, |an − a| < d
3 , and ∃N2 s.t. ∀n > N2, |an − b| < d

3 ,
but then

|a− b| = |(a− an) + (an − b)|
≤ |a− an|+ |an − b|

<
2d

3
,

which is a contradiction.
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§4 September 20th, 2022
§4.1 Divergence
A sequence that does not converge diverges.

Example 4.1. sn = (−1)n diverges.

Proof. Suppose that sn → a. Then ∃N s.t. n > N =⇒ |sn − a| < 1
2 . Choose n1

even and n2 odd. n1, n2 > N .
Note 2 = |sn1 − sn2 | = |(sn1 − a)− (sn2 − a)| ≤ |(sn1 − a)| + |(sn2 − a)| < 1

2 +
1
2 = 1, which is a contradiction.

Example 4.2. Let (sn) be a convergent seq. s.t. sn 6= 0 ∀n ∈ N, and

lim
n→∞

sn = s 6= 0.

Then inf {|sn| | n ∈ N} > 0.
Choose ε so that sequence will lie in a region ε from 0. Let ε = |s|

2 . There exists
N s.t. n > N =⇒ |sn − s| < ε.

|s| = |sn + s− sn|
≤ |sn|+ |s− sn| .

=⇒ |sn| ≥ |s| − |s− sn|

> |s| − |s|
2

=
|s|
2
.

Let m = min
{

|s|
2 , |s1| , |s2| , . . . , |sN |

}
. |sn| ≥ m for all m ∈ N. Therefore, m is a

lower bound for inf {|sn| | n ∈ N} ≥ m > 0.

Theorem 4.3 (Sandwich lemma)
Suppose that (an), (bn), (sn) are sequences so that

an ≤ sn ≤ bn ∀n.

Suppose that s = limn→∞ an = limn→∞ bn. Then limn→∞ sn = s.

Proof. We want to show that s− ε < sn < s+ ε eventually.
Choose ε > 0, then ∃N1 s.t. n > N1 =⇒ |an − s| < ε =⇒ an > s − ε.

Choose N2 for b as well, so that n > N2 =⇒ bn < s + ε. Let n > N1 and
n > N2. Then

s− ε < an ≤ sn ≤ bn < s+ ε =⇒ |sn − s| < ε.

12



Pramana (Fall 2022) MATH 521 - Analysis I Notes

Proposition 4.4
Convergent sequences are bounded.

Proof. Let (sn)n∈N have limn→∞=s. Then ∃N s.t. n > N =⇒ |sn − s| < 1. By
the triangle inequality,

|sn| ≤ |s|+ |sn − s|
< |s|+ 1.

Choose M = max {|s|+ 1, |s1| , |s2| , . . . } . Then |sn| ≤ M∀n ∈ N, so (sn) is
bounded.

§4.2 Useful limit properties

Proposition 4.5 (Scalar limits)
If sn → s and k ∈ R, then ksn → ks as n → ∞.

Proof. If k = 0, then ksn = 0, which is immediately true.
If k 6= 0, then choose ε > 0. Then ∃N s.t. n > N =⇒ |sn − s| < ε

|k| =⇒
|ksn − ks| < ε.

Proposition 4.6
Is sn → s, and tn → t, then

1. sn + tn → s+ t as n → ∞.

2. sn · tn → s · t as n → ∞.

3. If sn → s and sn 6= 0 ∀n and s 6= 0, then 1
sn

→ 1
s .

Proof. (1) Let |sn − s| , |tn − t| < ε
2 , and the result follows.

(2) We want |sntn − st| < ε.

|sntn − st| = |sntn − snt+ snt− st|
≤ |sntn − snt|+ |snt− st|
= |sn| |tn − t|+ |t| |sn − s| .

Since sn → s, it is bounded. So |sn| < M for some M . Choose ε > 0:

• ∃N1 s.t. n > N1 =⇒ |tn − t| < ε
2M

• ∃N2 s.t. n > N2 =⇒ |sn − s| < ε
2(|t|+1) (since |t| may be 0).

13
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Set N = max {N1, N2}. For n > N ,

|sntn − st| ≤ |sn| |tn − t|+ |t| |sn − s|

< M · ε

2M
+

ε

2(|t|+ 1)
|t| .

< ε.

(3) Let ε > 0. Since (sn) is bounded, ∃m > 0 s.t. |sn| ≥ m. ∃N ∈ N s.t. for
n > N =⇒ |s− sn| < εM |s|.∣∣∣∣ 1sn − 1

s

∣∣∣∣ = ∣∣∣∣ s

s · sn
− sn

sn · s

∣∣∣∣
=

|s− sn|
|sn · s|

≤ |s− sn|
m |s|

< ε.

We can combine all the properties to relate how limits of the combination of
two sequences will end up. For example, limn→∞

tn
sn

= limn→∞ tn · 1
sn

= t · 1s = t
s .

14
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§5 September 22nd, 2022
§5.1 Convergent sequences example

Example 5.1. limn→∞ an = 0 if |a| < 1.

Proof. If a = 0, obvious. Otherwise, let |a| = 1
1+b . Note that

(1 + b)n = 1 + nb+ · · · ≥ 1 + nb > nb for n ∈ N,

by the binomial theorem. Then

|an − 0| = |an| = 1

(1 + b)n
<

1

nb
.

For ε > 0, By letting N = 1
εb , then |an − 0| < ε∀n > N .

§5.2 Divergence to infinity
Definition 5.2 (Infinite limits). Write that

lim
n→∞

sn = ∞

if ∀M > 0, there exists N s.t.

n > N =⇒ sn > M.

Write that
lim
n→∞

sn = −∞

if ∀M < 0, there exists N s.t.

n > N =⇒ sn < M.

In both of these cases sn diverges to ±∞.
Definition 5.3. (sn) has a limit if it converges or diverges to ±∞.

Example 5.4. limn→∞ n = ∞ and limn→∞ −n = −∞.

Proposition 5.5
Let (sn) and (tn) so that sn diverges to infinity, and lim tn > 0. Then
lim sntn = ∞.

Proof. Split into cases:
• Case 1: lim tn = t ∈ R. Then ∃N1 s.t. n > N1 =⇒ |tn − t| < t

2 =⇒
tn > t

2 =: λ.

• Case 2: lim tn = ∞. Then ∃N1 s.t. n > N1 =⇒ tn > 1 := λ.
Choose M > 0, since sn → ∞, there exists N2 s.t. n > N2 s.t. sn > M

λ . Set
N = max {N1, N2}, then n > N =⇒ tnsn > λ · M

λ = M . �

15
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§5.3 Monotonic sequences
Definition 5.6. A sequence (sn) is non-decreasing if sn ≤ sn+1∀n, and non-
increasing if sn ≥ sn+1∀n.

A sequence that is either non-decreasing or non-increasing is monotonic.

Example 5.7 (Monotonic sequences). sn = n is an unbounded monotonic sequence.
sn = 1− 1

n or sn = 1
n are bounded monotonic sequences.

Theorem 5.8
All bounded monotonic sequences converge.

Proof. Let (sn) be a non-decreasing seq. It is easy to show that the limit is
sup {sn | n ∈ N} by supremum properties.

Proposition 5.9
If sn is an unbounded non-decreasing sequence, then limn→∞ sn = ∞.

Proof. {sn | n ∈ N} is bounded below by s1, and unbounded above. For any
M > 0,∃N ∈ N s.t. sN > M . Since the sequence is non-decreasing, n > N ,
sn ≥ sN > M for all as well.

Corollary 5.10
If (sn) is monotonic, it either converges, or diverges to ±∞. Thus, lim sn is
always meaningful.

§5.4 Liminf and limsup
Definition 5.11. For a sequence (sn), we define associated sequences (uN ), (vN )
as

uN = inf {sn | n > N} ,

vN = sup {sn | n > N} .

Then u1 ≤ u2 ≤ u3 ≤ · · · , so (uN ) is a non-decreasing sequence, and v1 ≥ v2 ≥
v3 ≥ · · · , so (vN ) is a non-increasing seq. Define the lim sup and lim inf as

lim sup
n→∞

sn := lim
N→∞

vN and lim inf
n→∞

sn := lim
N→∞

uN .

These are useful, since (uN ) and (vN ) are both monotonic, therefore lim supn→∞ sn
and lim infn→∞ sn both exist.

16
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Example 5.12. For sn = (−1)n and

uN = inf {sn | n > N} vN = sup {sn | n > N} ,

lim inf
n→∞

sn = lim
N→∞

uN = −1 lim sup
n→∞

sn = lim
N→∞

vN = 1,

Theorem 5.13
For a sequence (sn),

1. If lim sn exists, then lim inf sn = lim sn = lim sup sn,

2. lim inf sn = lim sup sn =⇒ lim sn is defined, and lim inf sn = lim sn =
lim sup sn.

This can be proven with theorem 4.3.

§5.5 Cauchy sequences
Definition 5.14. A sequence (sn) is Cauchy if ∀ε > 0, ∃N s.t. m,n > N , then
|sn − sm| < ε.

17
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§6 September 27th, 2022
§6.1 Cauchy results

Theorem 6.1 (Convergence is Cauchy)
Convergent sequences are Cauchy sequences.

Proof. Suppose lim sn = s. Then

|sn − sm| = |sm − s+ s− sn|
≤ |sn − s|+ |sm − s| .

Choose ε > 0. ∃N s.t. for m,n > N , |sm − s| , |sn − s| < ε
2 , so

|sn − sm| ≤ |sn − s|+ |sm − s| < ε

2
+

ε

2
= ε.

Theorem 6.2 (Cauchy is bounded)
Cauchy sequences are bounded.

Proof. Fix ε = 1 to find n ∈ N s.t. m,n > N =⇒ |sn − sm| < 1. Then
n > N =⇒ |sN+1 − sn| < 1 =⇒ |sn| < |sN+1|+ 1.

Let |sn| is bounded by M = max {|s1| , |s2| , . . . , |sN | , |sN+1 + 1|}.

Theorem 6.3 (Cauchy is convergence)
Cauchy sequences are convergent sequences (converse of theorem 6.1).

Proof. Choose ε > 0. ∃N s.t. m,n > N =⇒ |sn − sm| < ε =⇒ sn < sm + ε,
so sm+ε is upper bound for {sn | n > N}. Then vN = inf {sn | n > N} ≤ sm+ε
for m > N . Then vN − ε is a lower bound for sup {sm | m > N}, so vN <
sup {sm | m > N} = uN .

Thus,
lim sup sn ≤ vN ≤ uN + ε ≤ (lim inf sn) + ε

for arbitrarily small ε > 0, and lim inf sn = lim sup sn, and the sequence converges.

§6.2 Subsequences
Definition 6.4. A subsequence of seq. (sn)n∈N has the form (tk)k∈N where for
each k, there is a positive integer nk so that

n1 < n2 < · · · , < nk < nk+1 < · · ·

and tk = snk
.

A selection function may be defined as σ : N → N : σ(k) = nk for k ∈ N so
that tk = t(k) = s ◦ σ(k) = s(σ(k)) = s(nk) = snk

.

18
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Example 6.5. Let sn = n2(−1)n : (−1, 4,−9, 16,−25, . . . ). The positive terms are
a subsequence. This is given by σ(k) = nk = 2k, or snk

= (2k)2(−1)2k = 4k2.

Proposition 6.6
Suppose a sequence (sn) has sn > 0 ∀n ∈ N, and inf {sn | n ∈ N} = 0. Then
there exists a subsequence (snk

) with limit 0.

Proof. Elements are arbitrarily close to 0 by inf {sn | n ∈ N} = 0. We take a
subsequence bounded by

(
1
n

)
n∈N to finish.

Proposition 6.7
If (sn) converges, then every subsequence converges to the same limit.

We now prove the Bolzano-Weierstraß Theorem.

Lemma 6.8
Every sequence (sn) has a monotonic subsequence.

Proof. Define a term n as dominant if sn > sm∀m > n. There are two cases:

1. Case 1: There are infinite dominant terms. Define (snk
) as subsequence of

them. Then snk+1
< snk

for all k, so it is a decreasing sequence.

2. Case 2: There are finitely many dominant terms. Choose n1 past all of
them. Given N ≥ n1, then ∃m > N , s.t. sm ≥ sN . If we continue choosing
terms like this, then we have a non-decreasing sequence.

Theorem 6.9 (Bolzano-Weierstraß Theorem)
Every bounded sequence has a convergent subsequence.

Proof. The sequence has a monotonic subsequence by the previous lemma, and
it is bounded. By theorem 5.8 that subsequence converges.

Visually, we split the bounds of the sequence in half. At least one half will have
infinitely many terms. We continue this process to make a split arbitrarily small
region with infinitely many terms. This expands to 2 dimensions with splitting
into 4 squares.

Definition 6.10. A subsequential limit is any s ∈ R that is the limit of some
subsequence of (sn).
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Example 6.11. Let sn =
(
n sin πn

2

)
+ 1

n on n ∈ N. The subsequential limits are
S = {0,−∞,∞}.

Proposition 6.12
There is a monotonic subsequence of (sn) that has limit lim sup sn and
lim inf sn.

Theorem 6.13
If (sn) is a sequence in R, and S is the set of subsequential limits of (sn).
Then

1. S is non-empty.

2. supS = lim sup sn, and inf S = lim inf sn

3. lim sn exists ⇐⇒ S = {lim sn}.

Proof of (2). Consider a subsequence (snk
)k∈N with limit t. Then

t = lim inf snk
= lim sup snk

.

In addition, {snk
| k > N} ⊆ {sn | n > N} and

lim inf sn ≤ lim inf snk
= t = lim sup snk

≤ lim sup sk.

By previous result, there are subsequences that tend to lim inf sn, lim sup sn, so

inf S = lim inf sn, supS = lim sup sn.
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§7 September 29th, 2022
§7.1 Subsequence results

Theorem 7.1 (S is a closed set)
Let S be the set of subsequential limits of (sn). Suppose (tn) is a subsequence
of S ∩ R, and t = lim tn. Then t ∈ S.

Proof. Since a subsequence of (sn) converges to t1, there exists n1 s.t. |sn1 − t1| <
1. Choose n1 < n2 < · · · , s.t.

∣∣snj − tj
∣∣ < 1

j for j = 1, 2, . . . , k.
Suppose |snk

− t| ≤ |snk
− tk|+ |tk − t| < 1

k + |tk − t|. Consider ε > 0. There
is N1 s.t. k > N1 =⇒ |tk − t| < ε

2 , and N2 s.t. 1
k < ε

2 . Let N = max {N1, N2}.

|snk
− t| < ε

2
+

ε

2
= ε.

For the next theorem, we allow for s · ∞ = ∞ and s · (−∞) = −∞.

Theorem 7.2
Given sequences (sn) and (tn) s.t. lim sn = s > 0, then lim sup sntn =
s(lim sup tn).

Proof. Suppose lim sup tn is finite, and equal to β. Then there is a subsequence
(tnk

) that converges to β. In addition, limk→∞ snk
= s, then

lim
k→∞

snk
tnk

= βs.

Therefore, s lim sup tn = βs ≤ lim sup sntn.
To avoid division by 0, we ignore any finite number of terms of (sn) and assume

sn 6= 0 for all n beyond some point, since lim sn 6= 0.
Then lim 1

sn
= 1

s .

lim sup tn = lim sup

(
1

sn

)
sntn ≥ 1

s
lim sup sntn.

Therefore, s lim sup tn ≥ lim sup sntn, which proves equality.

Theorem 7.3
Let (sn) be any sequence of non-zero numbers. Then

lim inf

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ lim inf |sn|
1
n ≤ lim sup |sn|

1
n ≤ lim sup

∣∣∣∣sn+1

sn

∣∣∣∣ .
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Proof of third inequality. Let α = |sn|
1
n , and L =

∣∣∣ sn+1

sn

∣∣∣. It suffices to show that
α ≤ L1∀L1 > L.

L = lim sup

∣∣∣∣sn+1

sn

∣∣∣∣
= lim sup

N→∞

{∣∣∣∣sn+1

sn

∣∣∣∣ : n > N

}
< L1.

Where L1 is arbitrarily larger than L. Then there exists N ∈ N s.t.

sup

{∣∣∣∣sn+1

sn

∣∣∣∣ : n > N

}
< L1,

and therefore ∣∣∣∣sn+1

sn

∣∣∣∣ < L1 for n > N.

For n > N ,

|sn| =
∣∣∣∣ sn
sn−1

∣∣∣∣ ∣∣∣∣sn−1

sn−2

∣∣∣∣ · · · ∣∣∣∣sN+1

sN

∣∣∣∣ |sN | < Ln−N
1 |sN | .

Since L1 and N are fixed, let a = L−N
1 |sN |.

|sn| < Ln
1a

|sn|
1
n < L1a

1
n for n > N.

We have that limn→∞ a
1
n = 1. Hence, α = lim sup |sn|

1
n ≤ L1, so α ≤ L.

Corollary 7.4
If limn→∞

∣∣∣ sn+1

sn

∣∣∣ exists and is L, then limn→∞

∣∣∣sn 1
n

∣∣∣ exists and is L.

§7.2 Series
When we write

∑∞
n=m an, we consider the sequence of partial sums

sn =
n∑

k=m

ak.

The infinite series
∑∞

n=m an, converges if the sequence of partial sums con-
verges.

∞∑
n=m

an := lim
n→∞

(
n∑

k=m

ak

)
= lim

n→∞
sn = S.

By making the ordering stay consistent across the partial sums, we avoid different
convergences.

∑∞
n=m an diverges to ±∞ provided that limn→∞ sn = ±∞. We

can write
∑

an to refer to the sum of the series in general.
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Example 7.5 (Series examples). Some examples of series from class

• Consider the sum
n∑

k=0

an = 1 + a+ a2 + · · ·+ an =
an+1 − 1

a− 1
.

Since we showed that limn→∞ an = 0 if |a| < 1 in which case

∞∑
k=0

an = lim
n→∞

an+1 − 1

a− 1
=

1

1− a
.

• The sum
∞∑
k=1

1

kp

converges if and only if p > 1. When p = 2, the sum is π2

6 , p = 3 yields
1.2020569 (Apéry’s constant).

Remark 7.6 (Riemann zeta function). The Riemann zeta function is

ζ(p) =

∞∑
k=1

1

kp
,

and is defied for real p > 1. Can be analytically extended to C. There are zeros of
this function at −2,−4,−6, . . . , but they are ”trivial”.

There are also sporadic zeros on the line <(p) = 1
2 . The Riemann hypothesis says

that all zeros lie on this line.

Proposition 7.7
ak is Cauchy if

∑
ak satisfies ∀ε > 0, ∃N s.t. n ≥ m > N implies

|sm−1 − sn| < ε,

or ∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε.

Corollary 7.8
If
∑

ak converges, then lim an = 0.
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Proposition 7.9 (Comparison test)
Let

∑
an be a series where an ≥ 0∀n. Then,

1. If
∑

an converges and |bn| ≤ an, then
∑

bn converges.

2. If
∑

an = ∞ diverges and |bn| ≥ an, then
∑

bn = ∞.

Proof. (1) Consider the Cauchy criterion,∣∣∣∣∣
n∑

k=m

bk

∣∣∣∣∣ ≤
n∑

k=m

|bk| ≤
n∑

k=m

ak.

For all ε > 0, there exists N s.t. n ≥ m > N implies∣∣∣∣∣
n∑

k=m

bk

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=m

an

∣∣∣∣∣ < ε.

(2) We know that
n∑

k=1

ak ≤
n∑

k=1

bk.

Then ∀M > 0, ∃N s.t. n > N implies

M <

n∑
k=1

ak ≤
n∑

k=1

bk =⇒
∑

bn = ∞.

Definition 7.10.
∑

ak is absolutely convergent if
∑

|ak| converges. Note that∑
|ak| is monotonic and always has a meaningful limit. Absolutely convergent

=⇒ convergent.

Proposition 7.11 (Ratio test)
A series

∑
an of non-zero terms

1. Converges absolutely if lim sup
∣∣∣an+1

an

∣∣∣ < 1.

2. Diverges if lim inf
∣∣∣an+1

an

∣∣∣ > 1.

3. Otherwise, the test provides no information.

Proposition 7.12 (Root test)
Let

∑
an be a series and α = lim sup |an|

1
n The series

∑
an

1. Converges absolutely if α < 1.

2. Diverges if α > 1.

3. Otherwise, the test provides no information.
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Example 7.13 (Ratio test). Consider
∑

n2

2n , so by proposition 7.11,

lim
an+1

an
= lim

(
1 + 1

n

)2
2

=
1

2
.

Example 7.14 (Using tests). Two examples of using both tests,

• Consider
∑

1
n! . By the ratio test, the ratio is 1

n → 0, so it converges absolutely.

• Consider
∑∞

n=0 2
(−1)n−n = 2 + 1

4 + 1
2 + 1

16 + 1
8 + · · · . We see

1

8
= lim inf

∣∣∣∣an+1

an

∣∣∣∣ < lim sup

∣∣∣∣an+1

an

∣∣∣∣ = 2.

So the ratio test provides no information. But the root test yields

lim(an)
1/n lim 2

1
n−1 = 2−1 =

1

2
.
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§8 October 4th, 2022
§8.1 Series test proofs and examples
We now prove proposition 7.12.

Proof. Suppose α < 1. Choose ε > 0 s.t. α+ ε < 1. Then ∃N s.t.

α− ε < sup
{
|an|1/n | n > N

}
< α+ ε.

Hence, |an|1/n < α+ ε∀n > N . |an| < (α+ ε)n < 1. Then

k∑
n=N+1

|an| <
k∑

n=N+1

(α+ ε)n

is finite, so
∑

an is also finite.
If α > 1, then there exists subsequence |an|1/n that his limit > 1, hence |an| > 1

for infinitely many terms and the series diverges.

Next we prove proposition 7.11.

Proof. Since

lim inf

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ lim inf |sn|
1
n ≤ lim sup |sn|

1
n ≤ lim sup

∣∣∣∣sn+1

sn

∣∣∣∣
=⇒ lim inf

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ α ≤ lim sup

∣∣∣∣sn+1

sn

∣∣∣∣ ,
from which conclusions follow from proposition 7.12.

So the ratio test is just a weaker root test, since there are more types of
functions that satisfy its constraints.

§8.2 Alternating series and integral tests

Example 8.1 (Integral test for divergence). Consider the sequence an = 1
n . Note that

n∑
k=1

1

k
≥
∫ n+1

1

1

x
dx = log (n+ 1) .

Taking the limit of everything to ∞, limn→∞ log (n) = ∞, so series diverges to ∞.

Example 8.2 (Integral test for convergence). Consider the sequence an = 1
n2 . Note

that
n∑

k=1

1

k2
≤
∫ n

1

1

x2
dx+ 1.

Since the integral is finite, the series must converge.
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Theorem 8.3 (Alternating series theorem)
Suppose you have a sequence ai ≥ ai+1 and ai ≥ 0 for all i, and limn→∞ an =
0. Then

∞∑
n=1

(−1)n+1an

converges.

Proof. The subsequence (s2n) is increasing, (where s is the series sum) since
s2n+2 − s2n = a2n+2 + a2n+1 ≥ 0. Similarly, (s2n−1) is decreasing. First s2n ≤
s2n+1∀n, since s2n+1 − s2n = a2n+1 ≥ 0. If m ≤ n, then s2m ≤ s2n ≤ s2n+1. If
m ≥ n, s2n+1 ≥ s2m+1 ≥ s2m Hence (s2n) and (s2n+1) are bounded, and their
limits exist. Let those limits be s, t respectively.

t− s = lim
n→∞

s2n+1 − lim
n→∞

s2n

= lim
n→∞

s2nn+1 − s2n

= lim
n→∞

a2n+1 = 0.

So s = t and limn→∞ sn = s.

§8.3 Metric spaces
Since many of the proofs rely on the triangle inequality, we to generalize to more
spaces than just R.

Definition 8.4. Let S be a set and d be defined for all (x, y) ∈ S × S such that

1. d(x, x) = 0∀x ∈ S and d(x, y) > 0∀x 6= y, x, y ∈ S.

2. d(x, y) = d(y, x)∀x, y ∈ S

3. d(x, z) ≤ d(x, y) + d(y, z)∀x, y, z ∈ S (triangle inequality)

If all are true, then d is a metric and the pair (S, d) is a metric space.

Example 8.5 (Euclidean norm). For Rk, let x = (x1, · · · , xk), and y = (y1, · · · , yk)
and define the metric d as d(x,y) =

√∑k
i=1(xi − yi)2

Definition 8.6. We extend the convergence property of a sequence s to if

lim
n→∞

d(sn, s) = 0,

and Cauchy if for each ε > 0, ∃N s.t. m,n > N =⇒ d(sn, sm) < ε.

Definition 8.7. A metric space is complete if every Cauchy sequence in S
converges to some element in S. In R the notion of completeness is interchangeable
with the completeness axiom.
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§8.4 Topological concepts
Definition 8.8. Given a metric space (S, d),

a. A neighborhood of some element p ∈ S is a set

Nr(p) = {q | q ∈ S, d(p, q) < r} .

b. A point p is a limit point of a set E ⊆ S if every neighborhood of p
contains a q 6= p s.t. q ∈ E. If p ∈ E is not a limit point, it is called an
isolated point. E is closed if every limit point p of E has p ∈ E.

c. A point p is an interior point of E if there is a neighborhood N(p) s.t.
N ⊆ E. E is open if every point of E is an interior point of E.

d. The complement of E, denoted EC is the set of all pts. p ∈ S s.t. p /∈ E.

e. E is bounded if there is a real number M and a point q ∈ S s.t. d(p, q) <
M∀p ∈ E.

Definition 8.9. Two metrics d1, d2 on S are equivalent if ∀x ∈ S, ∀ε > 0, we
can find a δ > 0 s.t. N

(d1)
δ (x) ⊆ N

(d2)
ε (x) and vice-versa.
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§9 October 6th, 2022
§9.1 Open and closed sets

Theorem 9.1
Every neighborhood is an open set.

Proof. Consider E = Nr(p), and look at q ∈ E. Then ∃h > 0 s.t. d(p, q) = r− h.
Consider s s.t. d(q, s) < h. We know that

d(p, s) ≤ d(p, q) + d(q, s) < r − h+ h = r.

Hence, Nh(q) ⊆ Nr(p)∀q ∈ E, and E is open.

Proposition 9.2
If p is a limit point of a set E, then every neighborhood of p contains infinitely
many points of E.

Proof. Suppose for contradiction there is a neighborhood N of p that only contains
a finite number of points in E. Let q1, . . . , qn be the points in N ∩ E that are
distinct. Let r = minm∈{1,...,n} d(p, qm). But that means that qi ∈ Nr(p).

Corollary 9.3
A finite point set has no limit points.

Theorem 9.4
For a collection of possibly infinite sets Eα,

A =

(⋃
α

Eα

)C

=
⋂
α

EC
α = B.

Proof. If x ∈ A, then x /∈
⋃

αEα, so x /∈ Eα for all α. So x ∈ EC
α for all α. So

x ∈
⋂

αE
C
α = B. Hence, A ⊆ B, similar proof follows for B ⊆ A.

Theorem 9.5
E open ⇐⇒ EC closed.
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Proof. Suppose EC is closed. Choose x ∈ E. Since x /∈ EC , x is not a limit
point of EC . Hence, ∃Nr(x) s.t. EC ∩Nr = ∅ =⇒ Nr ⊆ E. Therefore, x is an
interior point of E∀x ∈ E, so E is open.

Suppose E is open. Let x be a limit point of EC . Then every neighborhood
contains a point of EC so x is not an interior point of E, so x is not an interior
point of E. Since E is open, x ∈ EC for all limit points of E, so EC is closed.

Theorem 9.6
Results for open and closed sets:

a. For any collection {Gα} of open sets,
⋃

αGα is open.

b. For any collection {Fα} of closed sets,
⋂

α Fα is closed.

c. For any finite collection G1, . . . , Gn of open sets,
⋂n

i=1Gi is open.

d. For any finite collection F1, . . . , Fn of closed sets,
⋃n

i=1 Fi is closed

Proof. (a) Suppose that G =
⋃

αGα. If x ∈ G, then x ∈ Gα, and x is an interior
point of Gα, so x is an interior point of G. So G is open.

(b) Use the fact that
⋂

α Fα =
⋃

α(Fα)
C .

(c) Let H =
⋂n

i=1Gi. For any x ∈ H, there exist Ni’s with radii ri s.t. Ni ⊆ Gi.
Let r = mini∈{1,...,n} {ri}, so Nr(x) ⊆ Gi.

(d) Follows similarly to (b).

Definition 9.7. If (X, d) is a metric space, and E ⊆ X, let E′ denote the sets
of all limit points of E in X. Then the closure of E is the set E = E ∪ E′.

Theorem 9.8
If (X, d) is a metric space and E ⊆ X, then

a. E is closed.

b. E = E ⇐⇒ E is closed.

c. E ⊂ F for every closed set F ⊆ X s.t. E ⊆ F .

Proof. (a) If X 3 p /∈ E, then p is neither in E nor a limit point of E. Hence, p
has a neighborhood that does not intersect E. Therefore, p is an interior point
of EC , so E

C is open, and E is closed.
(b) If E = E, then E is closed by (a). If E is closed, then E′ ⊆ E, hence

E = E ∪ E = E.
(c) If F is closed and E ⊇ F , then F ⊇ F ′ and F ′ ⊇ E′. Therefore, F ⊇ E.
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§10 October 11th, 2022
§10.1 Relative openness

Proposition 10.1
Let E ⊆ R be nonempty and bounded above. Let y = supE. Then y ∈ E,
and y ∈ E if E is closed.

Proof. y ∈ E =⇒ y ∈ E, so assume y /∈ E. For h > 0, there exists x ∈ E s.t.
y − h < x < y. Therefore, y is a limit point of E, and y ∈ E.

Consider E ⊆ Y ⊆ X. If E is an open subset of X, then for each p ∈ E, there
exists r > 0 s.t.

Nr(p) = {q ∈ X | d(p, q) < r} ⊆ E.

Note the neighborhood definition depends on the space X, and the pair (Y, d) is
also a metric space. This motivates the following definition.

Definition 10.2. E is open relative to Y if for each p ∈ E, there exists an
r > 0 s.t.

NY
r (p) = {q ∈ Y | d(p, q) < r} ⊆ E.

In words, for each point p ∈ E, there is a neighborhood on Y ’s metric that is
contained in E.

Example 10.3 (Relative openness example). Suppose X = R, Y = [−1, 1], and E =
(0, 1]. Hence, E ⊆ Y ⊆ X. E is not open relative to Y , since NX

r (1) = (1− r, 1+ r)
is not confined within E for any r. However, if E = (0, 1), E is open relative to Y .

Theorem 10.4
Suppose Y ⊂ X. A subset E is only open relative to Y if and only if
E = Y ∩G for some open subset G of X.

Proof. For each p ∈ E, ∃rp > 0 s.t. NY
rp(p) ⊆ E. Let

G =
⋃
p∈E

NX
rp (p).

The union of open sets is open. So G is an open subset of X and E ⊆ G∩Y .

§10.2 Compactness
Definition 10.5. An open cover of set E in a metric space is a collection {Gα}
of open subsets of X such that E ⊆

⋃
αGα.

Definition 10.6. A subset K of a metric space X is compact if every open
cover contains a finite subcover.
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For example, if {Gα} is an open cover of K, and K is compact, then there are
finitely many indices α1, . . . , αn s.t.

K ⊆ Gα1 ∪ · · · ∪Gαn .

Theorem 10.7
Suppose K ⊂ Y ⊂ X. Then K is compact relative to X ⇐⇒ K is compact
relative to Y .

Proof. Suppose that K is compact relative to X. Let {Vα} be a collection of sets
relatively open to Y such that K ⊆

⋃
α Vα. By a previous theorem there are sets

Gα open relative to X s.t. Vα = Y ∩Gα. By compactness,

K ⊆ Gα1 ∪ · · · ∪Gαn ,

and since K ⊆ Y , then
K ⊆ Vα1 ∪ · · · ∪ Vαn .

Conversely, suppose K is compact relative to Y , and let {Gα} be a collection
of open subsets of X that cover K. Define Vα = Y ∩Gα. Since Vα has a finite
cover of K, so does Gα.

The conclusion? Compact sets are metric spaces in their own right. While it
does not make sense to talk about closed or open metric spaces, it does to talk
about compact metric spaces.

Theorem 10.8
Compact subsets of metric spaces are closed.

Proof. Let K be a compact subset of a metric space, and consider KC . Choose
p ∈ KC . For any q ∈ K, let Vq and Wq be neighborhoods of p and q respectively
of radius less than d(p, q)/2. Since K is compact, there are finitely many points
q1, . . . , qn in K such that K ⊆ Wq1 ∪ · · · ∪Wqn . If we let V = Vq1 ∩ · · · ∩ Vqn , the
V is a neighborhood of P that does not intersect W . Hence, V ⊆ KC , and p is
an interior point of KC , and KC is open ⇐⇒ K is closed.

Theorem 10.9
Closed subsets of compact sets are compact.

Proof. Suppose that F ⊆ K ⊆ X, F closed (rel. to X), and K compact. Let
{Vα} be an open cover of F . If FC is adjoined to {Vα}, we obtain an open cover
Ω of K.

Since K is compact, there is a finite subcollection Φ of Ω that covers K and
therefore F . If FC is a member of Φ, we can remove it and still retain an open
cover of F . Thus, a finite subcollection of {Vα} covers F , so F is compact.
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Corollary 10.10
If F is closed, and K is compact, then F ∩K is compact.
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§11 October 13th, 2022
§11.1 Compact sets results

Theorem 11.1
If {Kα} is a collection of compact subsets of a metric space X s.t. the
intersection of every finite subcollection of {Kα} is non-empty, then

⋂
αKα

is non-empty

Proof. Fix a member K1 ∈ {Kα} and let Gα = KC
α . Assume that no point of

K1 belongs to all Kα. Then the set Gα forms an open cover of K1.
Since K1 is compact, ∃ finitely many indices α1, . . . , αn s.t. K1 ⊆ Gα1 ∪Gα2 ∪

· · · ∪Gαn .
But then K1 ∩Kα1 ∩Kα2 ∩ · · · ∩Kαn = ∅, so one point of K1 belongs to every

set Kα, and
⋂

αKα is non-empty.

Corollary 11.2
If {Kn} is a sequence of non-empty compact sets such that Kn ⊇ Kn+1∀n.
Then

⋂∞
n=1Kn is non-empty.

§11.2 Heine-Borel theorem

Lemma 11.3
If E is an infinite subset of a compact set K, then E has a limit point in K.

Proof. If no point of K were a limit point of E, then each q ∈ K has a neighbor-
hood Vq such that |Vq ∩ E| ≤ 1.

Since E has infinitely many points, we know that no finite subcollection of
{Vq} can cover E, and since E ⊆ K, then the same is true for K, implying K is
not compact, which is a contradiction.

Lemma 11.4
If {Ik} is a sequence of closed intervals in R1 such that In ⊇ In+1∀n. Then⋂∞

i=1 Ii is non-empty.

Proof. Let In be the interval [an, bn], and let E be the set of all an. E is bounded
above by b1. Let x = supE. For m,n ∈ N,

an ≤ am+n ≤ bm+n ≤ bm.

Since am ≤ x ≤ bm∀m ∈ N, x ∈ Im ∀m ∈ N, and x ∈
⋂∞

i=1.
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Definition 11.5. Let ai < bi for i = 1, . . . , k with ai, bi ∈ R. Then the set
x = (x1, x2, . . . , xk) ∈ Rk that satisfy ai ≤ xi ≤ bi for all i is called a k-cell.

For notation, we will have all vectors, and their entries, written in the way
above. We want to generalize corollary 11.2 from nested intervals to nested
k-cells.

Lemma 11.6
Let k > 0, k ∈ N. If {In} is a sequence of k-cells s.t. In ⊇ In+1∀n, then⋂∞

n=1 In is non-empty.

Proof. Let In be the set of all points x ∈ Rk s.t. an,j ≤ xk ≤ bn,j (1 ≤ j ≤
k, n ∈ N), and put In,j = [an,j , bn,j ]. For each dimension, there exists x∗j s.t.
an,j ≤ x∗j ≤ bnj for all j. So x∗ = (x∗1, x

∗
2, . . . , x

∗
k) ∈

⋂∞
n=1 In

Lemma 11.7
Every k-cell is compact.

Proof. Let I be a k-cell consisting of points x where aj ≤ xj ≤ bj for all j, and
let

δ =

√√√√ k∑
j=1

(bj − aj)2.

Then d(x,y) ≤ δ for x,y ∈ I.
Suppose there exists an open cover {Gα} of I that has no finite subcover.

Let ck =
aj+bj

2 . Then the intervals [aj , cj ] and [cj , bj ] determine 2k k-cells {Qi},
whose union is I.

At least one of the Qi’s cannot be covered by any finite subcollection of {Gα},
let that be I1. Now subdivide I1 and continue this process to get a sequence
{Ij}j∈N s.t.

1. I ⊇ I1 ⊇ I2 ⊇ · · ·

2. In is not covered by any finite subcollection of {Gα}

3. If x,y ∈ In, then
d(x,y) ≤ δ

2n
.

The previous result tells us that there is some x∗ s.t. x∗ ∈ In∀n. We must have
x∗ ∈ Gα for some α. Since Gα is open, ∃r > 0 s.t. the Nr(x

∗) ⊆ Gα.
By choosing a suitably large n s.t. 2−nδ < r. Then In ⊆ Gα. So Gα covers In

contradicting our assumption.
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Theorem 11.8 (Heine-Borel theorem)
If E ⊆ Rk, then the following statements are equivalent:

(a) E is closed and bounded.

(b) E is compact

(c) Every infinite subset of E has a limit point in E.

Proof. If (a) holds, then we can enclose E in a k-cell I. Since closed subset of
compact sets are compact, E is compact, so (a) =⇒ (b).

(b) =⇒ (c) is finished by a previous theorem.
To show (c) =⇒ (a), suppose that E is not bounded. Then E contains points

xn with |xn| > n∀n ∈ N. The set consisting of these points is infinite, but has no
limit point in Rk. Hence, (c) implies that E is bounded.

If E is not closed, then there is a point x0 ∈ Rk that is a limit point of E, but
is not contained in E. Therefore, ∃xn ∈ E s.t. |xn − x0| < 1

n∀n ∈ N. Let S be
the set of all such xn. S is infinite and has a limit point x0, and no other limit
points in Rk. Choose y ∈ Rk, where y 6= x0. Then

d(xn,y) ≥ d(x0,y)− d(xn,y) ≥ d(x0,y)−
1

n
≥ 1

2
d(x0,y).

For all but finitely many n. Thus, y is not a limit point of S, and E is closed.

§11.3 Functions and continuity
Definition 11.9. The domain of a function f is the set on which f is defined,
and is denoted dom(f).

For a real-valued function, dom(f) ⊆ R, and f(x) ∈ R for all x ∈ dom(f).
Sometimes the domain is omitted, and we assume that the function is valid on the
natural domain, the set of all points in R on which the function is well-defined.

Definition 11.10. Let f be a real-valued function whose domain is a subset of
R. The function f is continuous at x0 in dom(f) if for every sequence (xn) in
dom(f) that converges to x0,

lim
n→∞

f(xn) = f(x0).

If f is continuous at each point of a set S ⊆ dom(f), then f is said to be
continuous on S.
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§12 October 18th, 2022
Prof. Rycroft was out of town today, so the lecture notes are from a virtual
meeting. Lecture recording will be in Kaltura.

§12.1 Continuing continuity

Theorem 12.1
Let f : S → R, where S ⊆ R. Then f is continuous at x0 ∈ S if and only if
∀ε > 0, ∃δ > 0 s.t. x ∈ S and |x− x0| < δ, then |f(x)− f(x0)| < ε.

Proof. Suppose that ∀ε > 0, ∃δ > 0 s.t. x ∈ S and |x− x0| < δ, then
|f(x)− f(x0)| < ε is true. Take the sequence (xn) in dom(f) s.t. limn→∞ xn = x.
Let ε > 0. ∃δ > 0 s.t. x ∈ S and |x− x0| < δ =⇒ |f(x)− f(x0)| < ε. We know
∃N s.t. n > N =⇒ |xn − x0| < δ, and therefore |f(xn)− f(x0)| < ε.

Assume that f is continuous but the theorem fails. So for each n ∈ N, for
|xn − x0| < 1

n . ∃xn ∈ dom(f) s.t. |f(xn)− f(x0)| ≥ ε. But then lim f(xn) 6=
f(x0).

Example 12.2 (Continuity with rapid oscillations). Consider

f1(x) =

{
x sin 1

x x 6= 0,

0 x = 0.

Note that |f1(x)− f1(0)| =
∣∣x sin 1

x

∣∣ < |x| if x 6= 0 and 0 otherwise. Let δ = ε in
theorem 12.1 to show that f1 is continuous at 0.

Proposition 12.3
Let f be a real-valued function with dom(f) ⊆ R. If f is continuous at x0
in dom(f), then |f | and kf are too.

Proposition 12.4
Let f and g be real-valued function continuous at x0 ∈ R. Then

1. f + g is continuous at x0.

2. fg is continuous at x0.

3. f/g is continuous at x0 provided g(x0) 6= 0.

Proof. First two follow from sequence convergence theorems. For (3), examine
(xn) in dom(f) ∩ {x ∈ dom(g) | g(x) 6= 0} s.t. xn → x0. Then

lim
n→∞

(
f

g

)
(xn) = lim

n→∞

f(xn)

g(xn)
=

f(x0)

g(x0)
.
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Proposition 12.5
The composition of continuous function is continuous.

Example 12.6. The ”max” function is continuous. Let max(f, g) = 1
2 (f + g) +

1
2 |f − g|. We have shown that all the operations performed of f and g preserve
continuity.

Theorem 12.7
Let f be a continuous real-valued function on a closed interval [a, b]. Then
f is bounded and achieves its max/min values.

Proof. Suppose that f is not bounded. Then for each n ∈ N, ∃xn s.t. |f(xn)| > n.
By theorem 6.9, there is a subsequence (xnk

) that converges to x0. x0 must be
within the closed interval. Since f is continuous at x0, limk→∞ f(xnk

) = f(x0).
But limk→∞ |f(xnk

)| = ∞, which is a contradiction, so f is bounded.
Let M = sup {f(x) | x ∈ [a, b]}. M is finite. Then for each n ∈ N, ∃yn ∈ [a, b]

s.t. M − 1
n < f(yn) < M . Then limn→∞ f(yn) = M . By theorem 6.9, ∃ a

convergent subsequence ynk
that has limit y0 in [a, b]. Since f is continuous at

y0, then
f(y0) = lim

k→∞
f(ynk

) = lim
n→∞

f(yn) = M.

The same argument follows for the minimum.

Theorem 12.8 (Intermediate Value Theorem)
Let f be a continuous real-valued function on an interval I. Then whenever
a, b ∈ I, a < b, and f(a) < y < f(b) or f(b) < y < f(a), then ∃ at least 1
x ∈ (a, b) s.t. f(x) = y.

Proof. Let S = {x ∈ [a, b] | f(x) < y}. a ∈ S so S is non-empty, so supS = x0,
where x0 ∈ [a, b]. For all n ∈ N, x0 − 1

n is not an upper bound for S. So ∃sn ∈ S
s.t. x0 − 1

n < sn ≤ x0. Hence, limn→∞ sn = x0, and since f(sn) < y∀n,

f(x0) = lim
n→∞

f(sn) ≤ y.

Now let tn = min
{
b, x0 +

1
n

}
. Since x0 ≤ tn ≤ x0 + 1

n , then lim tn = x0.
tn ∈ [a, b], but tn /∈ S so f(tn) ≥ y, and

f(x0) = lim
n→∞

f(tn) ≥ y.

Using both results, f(x0) = y.
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Corollary 12.9
If f is a continuous real-valued function on an interval I, then f(I) is also
an interval or a single point.

Proof. Given y0, y1 ∈ f(I), then theorem 12.8 tells us that y0 < y < y1 for
y ∈ f(I).
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§13 October 20th, 2022
Zoom lecture again…

§13.1 Strictly increasing functions
Definition 13.1. Consider f(x) on the interval I. f(x) is strictly increasing if
for all x, y ∈ I, x < y =⇒ f(x) < f(y). In cases like this, an inverse function
f−1 can be unambiguously defined so that (f−1 ◦ f)(x) = x.

Theorem 13.2
Let g be a strictly increasing function on an interval J such that g(J) is an
interval I. Then g is continuous on J .

Proof. Consider x0 ∈ J so that it is not an endpoint. Hence, g(x0) is not an
endpoint, and ∃ε0 s.t.

(g(x0)− ε0, g(x0) + ε0) ⊆ I.

Assume ε < ε0. ∃x1, x2 ∈ J such that,
g(x1) = g(x0)− ε, g(x2) = g(x0) + ε.

Then x1 < x0 < x2 since it is strictly increasing. Similarly, for x ∈ (x1, x2),
g(x1) < g(x) < g(x2), then |g(x0)− g(x)| < ε. Let δ = min {x2 − x0, x0 − x1}.
Then |x− x0| < δ =⇒ |g(x)− g(x0)| < ε.

Theorem 13.3
Let f be a continuous, strictly increasing function on the interval I. J = f(I)
is an interval by previous result, and f−1 represent a function on f(I) that
is continuous and strictly increasing.

Proof. Continuity is given by the previous theorem.
Suppose a, b ∈ J s.t. a < b. Then ∃c, d ∈ I s.t. f(c) = a and f(d) = b.

a 6= b =⇒ c 6= d, so c < d (if c > d, then f(c) > f(d)). Hence, since c = f−1(a)
and d = f−1(b) we see f−1(a) < f−1(b). Therefore, f−1 is strictly increasing.

We can think of this a partial converse to theorem 12.8: A strictly increasing
function with the intermediate value property is continuous.

§13.2 Uniform continuity
Recall that f is continuous on S ⊆ dom(f) =⇒

∀x0 ∈ S, ∀ε > 0, ∃δ > 0 s.t.
x ∈ dom(f) and |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

Note that the voice of δ depends on the value of ε and x0. For example, f(x) = x−1

on (0,∞) has vastly different δ choices for different ε and x0.
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Example 13.4. Consider showing f(x) = x−1 is continuous at a point x0 > 0. Then

f(x)− f(x0) = x−1 − x−1
0 =

x0 − x

xx0
.

Pick ε > 0. Suppose that |x− x0| < x0/2, then x0

2 < x < 3x0

2 . Then

|f(x)− f(x0)| =
|x0 − x|
xx0

<
|x0 − x|

x0

2 x0
=

2 |x0 − x|
x2
0

.

Now suppose that δ = min
{

x0

2 ,
εx2

0

2

}
. Then |x0 − x| < δ implies

|f(x)− f(x0)| <
2

x2
0

· εx
2
0

2
= ε.

Hence, f in the example is continuous at x0, but δ gets small as x0 gets small
due to the steepness of 1

x . This motivates a definiton,

Definition 13.5. Let f be a real-valued function on S ⊆ R. Then f is uniformly
continuous on S if

∀ε > 0,∃δ > 0 s.t.

∀x, y ∈ S and |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Example 13.6. We consider f(x) = x−1 again. It is uniformly continuous on the
interval [a,∞) for a > 0. Let ε > 0 and consider any x, y ≥ a. Pick δ = min

{
a
2 ,

εa2

2

}
.

If |x− y| < δ, then |f(x)− f(y)| < δ from before.
However, f(x) is not uniformly continuous on (0,∞). To show this, we will prove

that ∀δ > 0, ∃x, y ∈ (0,∞) s.t. |x− y| < δ, and yet |f(x)− f(y)| ≥ 1. If δ > 1,
choose x = 1, y = 1

2 . Otherwise, if δ ≤ 1, choose x = δ, y = δ
2 , so

∣∣∣ 1δ − 1
δ/2

∣∣∣ = 1
δ ≥ 1.

Theorem 13.7 (Continuous on closed interval =⇒ uniformly continuous)
If f is continuous on [a, b], then f is uniformly continuous on [a, b].

Proof. Assume f is not uniformly continuous on [a, b]. Then ∃ε > 0 s.t. ∀δ >
0,∃x, y ∈ [a, b] s.t. |x− y| < δ but |f(x)− f(y)| ≥ ε.

If this is true, then define sequences xn, yn ∈ [a, b] s.t. |xn − yn| < 1
n , but

|f(xn)− f(yn)| ≥ ε. By theorem 6.9, there is a subsequence (xnk
) which con-

verges. But if x0 = limk→∞ xnk
, then x0 ∈ [a, b]. In addition, limk→∞ ynk

= x0
as well. But since f is continuous at x0,

f(x0) = lim
k→∞

f(xnk
) = lim

k→∞
f(ynk

) =⇒ lim
k→∞

f(xnk
)− f(ynk

) = 0,

which contradicts the assumption that |f(xnk
)− f(ynk

)| ≥ ε
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Theorem 13.8 (Uniformly continuous preserves Cauchy)
If f is uniformly continuous on a set S and (sn) is Cauchy in S, then (f(sn))
is Cauchy.

Proof. For ε > 0, ∃δ s.t. x, y ∈ S |x− y| < δ =⇒ |f(x)− f(y)| < ε. Then since
(sn) is Cauchy, ∃N s.t. n,m > N =⇒ |sn − sm| < δ =⇒ |f(sn)− f(sm)| < ε.
This result requires uniform continuity.

§13.3 Introducing limits of functions
Definition 13.9. Let S ⊆ R, and a ∈ R ∪ {±∞} that is the limit of some
sequence in S. Let L ∈ R ∪ {±∞}. We write

lim
x→aS

f(x) = L

given that

• f is a function defined on S.

• For every sequence (xn) in S with limit a, we have limn→∞ f(xn) = L.

We can conclude the limit exists if and only if f is continuous a on S.

Definition 13.10. Here are some standard definitions:

a. For a ∈ R, write limx→a f(x) = L if limx→aS f(x) = L for some S = J \{a}
where J is an open interval containing a.

b. Positive and negative limits are defined as

lim
x→a+

f(x) = L

if limx→aS f(x) = L for some open interval S = (a, b), or

lim
x→a−

f(x) = L

if limx→aS f(x) = L for some open interval S = (c, a).
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§14 October 25th, 2022
§14.1 Limits of functions
Definition 14.1. Infinite function limits are written

lim
x→∞

f(x) = L

if limn→∞S f(x) = L, where S = (c,∞).

Proposition 14.2 (Function limit properties)
Let f1, f2 be function such that

L1 = lim
x→aS

f1(x) and L2 = lim
x→aS

f2(x).

1. limx→aS (f1 + f2)(x) = L1 + L2

2. limx→aS (f1f2)(x) = L1L2

3. limx→aS (f1 + f2)(x) = L1/L2 provided f(x) 6= 0∀x ∈ S and L2 6= 0.

Proof. (1) Consider xn in S with limit a. Then

lim
n→∞

(f1 + f2)(xn) = lim
n→∞

f1(xn) + lim
n→∞

f2(xn) = L1 + L2.

Similarly, (2) and (3) are true.

Theorem 14.3
Let f be a function defined on S ⊇ R, and a ∈ R is a limit of some sequence
in S. Then

lim
x→aS

f(x) = L ∈ R

if and only if
∀ε > 0, ∃δ > 0 s.t. x ∈ S and

|x− a| < δ then |f(x)− L| < ε.

Proof. Consider a sequence in S s.t. limn→∞ xn = a. Goal: show limn→∞ f(xn) =
L.

Assume the second part is true. Then ∃N s.t. n > N =⇒ |xn − a| < δ =⇒
|f(x)− L| < ε. Hence, limn→∞ f(xn) = L.

Now assume that limx→aS f(x) = L, but the second part fails. Then ∃ε > 0
s.t. ∀δ > 0, x ∈ S and |x− a| < δ does not imply |f(x)− L| < ε. For each
n ∈ N,∃xn ∈ S where |xn − a| < 1

n while |f(xn)− L| ≥ ε. So xn → a, but
limn→∞ f(xn) = L fails, which is a contradiction.
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Alternatively, let f be defined on I \{a}, where I is an open interval and a ∈ I.
limx→a f(x) = L ∈ R if and only if

∀ε > 0, ∃δ > 0 s.t. 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

Theorem 14.4
Let f be a function defined on I \{a}. limx→a f(x) exists ⇐⇒ limx→a+ f(x)
and limx→a− f(x) exist and are equal, in which case all mentioned limits are
equal.

Proof. If limx→a f(x) = L, then

∀ε > 0, ∃δ > 0 s.t. 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

It follows that

∀ε > 0,∃δ > 0 s.t. a < x < a+ δ =⇒ |f(x)− L| < ε

∀ε > 0,∃δ > 0 s.t. a− δ < x < a =⇒ |f(x)− L| < ε

Therefore both limits are equal.
Conversely, choose ε > 0. Then

∀ε > 0,∃δ1 > 0 s.t. a < x < a+ δ1 =⇒ |f(x)− L| < ε

∀ε > 0,∃δ2 > 0 s.t. a− δ2 < x < a =⇒ |f(x)− L| < ε

Let δ = min {δ1, δ2}. Then

0 < |x− a| < δ =⇒ |f(x)− L| < ε =⇒ lim
x→a

f(x) = L.

§14.2 Power series
Definition 14.5. Let (an) be a real number seq. Then

∞∑
n=0

anx
n

is called a power series. We use the convention in power series that 00 = 1.

We can use power series to approximate other functions. For example,

sinx = x− x3

3!
+

x5

5!
− · · · .
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Theorem 14.6
For the power series

∑
anx

n, let β = lim sup |an|1/n, and R = β−1 (let
R = ∞ if β = 0 and vice-versa).

Then the power series converges for |x| < R, and diverges for |x| > R. R
is called the radius of convergence.

Proof. Using the root test, for x, let αx = lim sup |anxn|1/n = lim sup |an|1/n |x| =
|x| lim sup |an|1/n = |x|β.

If 0 < β < ∞, then αx = β |x| = |x|
R . Then if |x| < R, then αx < 1, and the

series converges, and if |x| > R, then αx > 1, and the series diverges.

Corollary 14.7 (Power series convergence properties)
For a power series

∑
anx

n, either

1. It converges ∀x ∈ R.

2. It converges at x = 0 only.

3. It converges x ∈ I, where I is an interval, but not necessarily open or
closed.

Example 14.8 (Endpoints are not guaranteed).

∞∑
n=0

xn,

∞∑
n=0

n−1xn,

∞∑
n=0

n−2xn

all have R = 1, but the first doesn’t converge for x = ±1, the second converges only
for x = −1, and the last converges for x = ±1.

We can write more generally for any point x0 ∈ R,
∞∑
n=0

an(x− x0)
n.

Any partial sum will be continuous (and differentiable), but this doesn’t guarantee
that the entire power series will also be continuous.
Definition 14.9. Let (fn) be a sequence of real-valued functions defined on
S ⊆ R. Then the sequence converges pointwise to a function f on S if

lim
n→∞

fn(x) = f(x)∀x ∈ S.

Then write that
lim
n→∞

fn = f fn → f,

and both are pointwise.
In terms of the ε-δ definiton,

∀x ∈ S,∀ε > 0,∃N s.t. n > N =⇒ |fn(x)− f(x)| < ε.
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§15 October 27th, 2022
§15.1 Uniform convergence of functions
Definition 15.1. Let (fn) be a sequence of real-valued functions defined on
S ⊆ R. Then fn converges uniformly on S to f if

∀ε > 0, ∃N s.t. |fn(x)− f(x)| < ε (∀x ∈ S, n > N)

In this case, write limn→∞ fn = f uniformly.

For any ε > 0, the fn have to eventually lie within a strip of width ε around f .

Example 15.2. Consider fn = (1− |x|)n. Then |fn(x)− f(x)| should eventually be
smaller than ε = 1

2 . However, the function will always pass the strip f(x)+ε < fn(x).
Let x = 1− 2−

1
N+1 . Then

(1− x)N+1 =
1

2
.

Therefore, |fN+1(x)− f(x)| = 1
2 .

Uniformly convergent series of functions are a subset of pointwise convergent
series of functions.

Example 15.3 (Uniform convergence with rapid oscillations). For example,

fn(x) =
1

n
sinn2x,

which forms lower amplitude sine waves with higher frequency as x → 0. For ε > 0,
∃N s.t. n > N |fn(x)− 0| ≤ 1

n < 1
N = ε.

Theorem 15.4
Let (fn) be a series of functions S ⊆ R and suppose fn → f uniformly on S
and dom(f) = S. If each fn is continuous at x0 ∈ S, then f is continuous at
x0.

Proof. Let ε > 0. ∃N ∈ N s.t. n > N =⇒ |fn(x)− f(x)| < ε
3∀x ∈ S, so

|fN+1(x)− f(x)| < ε
3∀x ∈ S. fN+1 is continuous at x0, so ∃δ > 0 s.t. x ∈ S and

|x− x0| < δ =⇒ |fN+1(x)− fN+1(x0)| < ε
3 .

Then x ∈ S and |x− x0| < δ implies

|f(x)− f(x0)| ≤ |f(x)− fN+1(x)|+ |fN+1(x)− fN+1(x0)|+ |fN+1(x0)− f(x0)|
< ε.

Definition 15.5. A seq. (fn) of functions defined on S ⊆ R is uniformly
Cauchy at x if

∀ε > 0∃N s.t. |fn(x)− fm(x)| < ε (∀x ∈ S,m, n > N).
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Theorem 15.6 (Uniformly Cauchy =⇒ uniformly convergent)
Let (fn) be series of functions that are uniformly Cauchy on S ⊆ R. Then
∃f on S s.t. fn → f uniformly.

Proof. Choose ε > 0. Then for fixed x0 ∈ S, |fn(x0)− fm(x0)| < ε ∀m,n > N .
Hence, fn(x0) is a Cauchy sequence, so it must converge to f(x0).

Since this applies to any x0 ∈ S, fn → f pointwise. To show convergence is
uniform, choose ε > 0. Then ∃N s.t. |fn(x)− fm(x)| < ε/2. Fix m > N . Then
∀n > N ,

fn(x) ∈
(
fm(x)− ε

2
, fm(x) +

ε

2

)
.

Then

lim
x→a

fm(x) = f(x) ∈
[
fm(x)− ε

2
, fm(x) +

ε

2

]
=⇒ |f(x)− fm(x)| ≤ ε

2
< ε.

§15.2 Application to power series

Proposition 15.7
Consider a sequence of partial sums of function (

∑n
k=0 gk) defined on S ⊆ R.

If each gk continuous on S and gk → g uniformly and g continuous on S,
then

∑∞
k=0 gk is continuous.

Proof. Let fn =
∑n

k=0 gk. fn is continuous, and fn → f uniformly, and f is also
continuous.

Proposition 15.8 (Analog of Cauchy criterion for function series limits)
For

∑∞
k=0 ak, the Cauchy criterion is

∀ε > 0,∃N s.t. n ≥ m > N =⇒

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε.

For a series of functions,

∀ε > 0, ∃N s.t. n ≥ m > N,x ∈ S =⇒

∣∣∣∣∣
n∑

k=m

gk(x)

∣∣∣∣∣ < ε

Theorem 15.9 (Weierstraß M -test)
Suppose (Mk) is a sequence of non-negative real numbers where

∑∞
k=0Mk

is finite. If |gk(x)| ≤ Mk ∀x ∈ S, ∀k, then
∑

gk converges uniformly on S.
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Proof. Since
∑

Mk converges, it satisfies proposition 15.8:∣∣∣∣∣
n∑

k=m

Mk

∣∣∣∣∣ < ε.

Hence, ∣∣∣∣∣
n∑

k=m

gk(x)

∣∣∣∣∣ ≤
n∑

k=m

|gk(x)| ≤
n∑

k=m

Mk < ε.

So gk converges uniformly on S.

Example 15.10. Use for power series
∞∑

n=1

2−nxn = x

∞∑
n=0

2−n−1xn

=
x

2

∞∑
n=0

(
1

2

)n

xn

=
x

2
· 1

1− x
2

=
x

2− x
.

At x = ±2, the series does not converge. For the interval [−a, a], a < 2, then
|2−nxn| ≤

(
a
2

)n, which converges as n → ∞. Now let Mn =
(
a
2

)n. By theorem 15.9,
the series converges uniformly on [−a, a]. The limit function must be continuous, so
it must be continuous on (−2, 2).
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§16 November 1st, 2022
§16.1 More power series results

Theorem 16.1
Let

∑∞
n=0 anx

n be a power series with a radius of convergence R > 0.
If 0 < R1 < R, the power series converges uniformly on [−R1, R1] to a
continuous function.

Corollary 16.2
The power series converges uniformly to a continuous function for the open
interval (−R,R).

Given a power series, f(x) =
∑∞

n=0 anx
n, then f ′(x) =

∑∞
n=0 nanx

n−1 has the
same radius of convergence, and must converge for the same values of x.

Theorem 16.3 (Abel’s theorem)
Let f(x) =

∑∞
n=0 anx

n be a power series with a finite positive radius of
convergence. If the series converges at x = R, then f is continuous at x = R,
and similarly for x = −R.

Proof. Consider f(x) =
∑∞

n=0 anx
n with radius of convergence 1 (we will gener-

alize later). Let the series converge at 1. Let, fn =
∑n

k=0 akx
k, and sn = fn(1) =∑n

k=0 ak. We note

lim sn = s =

∞∑
k=0

ak = f(1), sk − sk−1 = ak.

For 0 < x < 1,

fn(x) = s0 +

n∑
k=1

(sk − sk−1)x
k

= s0 +

n∑
k=1

skx
k − x

n−1∑
k=0

skx
k

=

(
n−1∑
k=0

sk(1− x)xk

)
+ snx

n.

We note that f(1) = s, and
∑∞

n=0 x
n = 1

1−x =⇒
∑∞

n=0(1 − x)xn = 1. Taking
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the limit as n → ∞,

lim fn(x) = f(x) =

∞∑
n=0

sn(1− x)xn.

f(1) = s =
∞∑
n=0

s(1− x)xn.

f(1)− f(x) =
∞∑
n=0

(s− sn)(1− x)xn.

Choose ε > 0. Since limn→∞ sn = s, ∃N ∈ N s.t. n > N =⇒ |s− sn| < ε
2 .

Define gN (x) =
∑N

n=0 |s− sn| (1− x)xn. Then

|f(1)− f(x)| ≤ gN (x) +
∞∑

n=N+1

|s− sn| (1− x)xn

≤ gN (x) +

∞∑
n=N+1

ε

2
(1− x)xn

= gN (x) +
ε

2

∞∑
n=N+1

(1− x)xn︸ ︷︷ ︸
bounded by 1

< gN (x) +
ε

2
.

gN is continuous and gN (1) = 0. Hence, ∃δ > 0 s.t. 1−δ < x < 1 =⇒ gN (x) < ε
2 .

Then
|f(1)− f(x)| < ε

2
+

ε

2
= ε.

If f(x) has radius of convergence R, define g(x) = f(Rx). g has radius of
convergence R, so the proof applies. For −R, let h(x) = f(−x).

A consequence is that if a power series and associated function agree with the
theorem statement, then

lim
x→R−

f(x) =
∞∑
n=0

anR
n,

or

lim
x→−R+

f(x) =
∞∑
n=0

an(−R)n.

§16.2 Approximating functions
Any continuous function on [0, 1] can be approximated by polynomials, they just
may not be power series. This can be done in terms of Bernstein polynomials.
For f continuous on [0, 1],

Bnf(x) =

∞∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.
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Although it is not that efficient for some functions, it nonetheless can approximate
any continuous function.

Lemma 16.4
For x ∈ R, n ≥ 0,

n∑
k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k = nx(1− x) ≤ n

4
.

Proof. Note

k

(
n

k

)
=

kn!

(n− k)!k!
=

n(n− 1)!

(n− k)!(k − 1)!
= n

(
n− 1

k − 1

)
.

Then
n∑

k=0

k

(
n

k

)
xk(1− x)n−k = n

n∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k

= nx

n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−j−1

= nx(x+ (1− x))n−1

= nx.

Similarly,
n∑

k=0

k(k − 1)

(
n

k

)
xk(1− x)n−k = n(n− 1)x2.

n∑
k=0

k2
(
n

k

)
xk(1− x)n−k = n(n− 1)x2 + nx = n2x2 + nx(1− x).

Since (nx− k)2 = n2x2 − 2nxk + k2,

n∑
k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k = n2x2 − 2nxk + k2 + nx(1− x)

= nx(1− x)

≤ n

4
.
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§17 November 3rd, 2022
§17.1 Finishing Bernstein polynomials

Theorem 17.1
For every continuous function on [0, 1], Bnf → f uniformly on [0, 1].

Proof. Assume that f is not always 0. Let M = sup {|f(x)| : x ∈ [0, 1]}. Choose
ε > 0. Then ∃δ > 0 s.t. |x− y| < δ =⇒ |f(x)− f(y)| < ε

2 . Consider
|Bnf(x)− f(x)| =

∣∣∑n
k=0 f

(
k
n

) (
n
k

)
xk(1− x)n−k − f(x)

∣∣. Note that
∑n

k=0

(
n
k

)
xk(a−

x)n−k = 1. We can rewrite the sum as

|Bnf(x)− f(x)| =

∣∣∣∣∣
n∑

k=0

(
f

(
k

n

)
− f(x)

)(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣ (nk
)
xk(1− x)n−k.

We separate the terms in the sum into two cases.

• If
∣∣ k
n − x

∣∣ < δ, then
∣∣f ( kn)− f(x)

∣∣ < ε
2 .

• If
∣∣ k
n − x

∣∣ ≥ δ, then
∣∣k−nx

n

∣∣ ≥ δ =⇒ (k−nx)2

n2 ≥ δ2 =⇒ (k − nx)2 ≥ δ2n2.

Let B a set of indices where the second case holds.∑
k∈B

∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣ (nk
)
xk(1− x)n−k ≤ 2M

∑
k∈B

(
n

k

)
xk(1− x)n−k

≤ 2M

n2δ2

∑
k∈B

(k − xn)2
(
n

k

)
xk(1− x)n−k

≤ 2M

n2δ2
· n
4

=
M

2nδ2
.

Consider for n > N = M
εδ2

. Then∑
k∈B

∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣ (nk
)
xk(1− x)n−k ≤ M

2
(
M
εδ2

)
δ2

<
ε

2
.

Let A be the indices where the first case holds. Then∑
k∈A

∣∣∣∣f (k

n

)
− f(x)

∣∣∣∣ (nk
)
xk(1− x)n−k <

∑
k∈A

ε

2

(
n

k

)
xk(1− x)n−k

≤ ε

2
.

Therefore, the entire sum is bounded by ε
2 + ε

2 = ε.
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Theorem 17.2 (Weierstaß approximation theorem)
Every continuous function on a closed interval [a, b] can be uniformly ap-
proximated by polynomials on [a, b].

For any function g(x) on [a, b], we can create h(x) on [0, 1] by h(x) = g(a+(b−a)x),
and apply theorem 17.1 on h(x).

§17.2 Differentiation
Definition 17.3. Let f be a real-valued function on S ⊆ R. Define the deriva-
tive f ′(a) at a ∈ S as

f ′(a) = lim
x→a

f(x)− f(a)

x− a
,

if it exists and is finite.

Theorem 17.4
If f is differentiable at a, then f is continuous at a.

Proof. Given

lim
x→a

f(x)− f(a)

x− a

exists, then

f(x) = (x− a)︸ ︷︷ ︸
=0

f(x)− f(a)

x− a︸ ︷︷ ︸
finite

+f(a)

Therefore
lim
x→a

f(x) = f(a).

Proposition 17.5
Let f , g be differentiable at a. Let c ∈ R. Then

1. (cf)′(a) = cf ′(a)

2. (f + g)′(a) = f ′(a) + g′(a)

3. (f · g)′(a) = f(a)g′(a) + f ′(a)g(a)

4. (f/g)′(a) = g(a)f ′(a)−f(a)g′(a)
g(a)2

except when g(a) = 0 for f/g.

53



Pramana (Fall 2022) MATH 521 - Analysis I Notes

Proof for (3).

(fg)(x)− (fg)(a)

x− a
=

f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= f(x)
g(x)− g(a)

x− a
+ g(a)

f(x)− f(a)

x− a
.

Therefore,

lim
x→a

(fg)(x)− (fg)(a)

x− a
= f(a)g′(a) + g(a)f ′(a).

Theorem 17.6 (Chain rule)
Suppose that f differentiable at a and g differentiable at f(a). Then

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. Define

h(y) =
g(y)− g(f(a))

y − f(a)

for y ∈ dom(g), y 6= f(a). Also define h(f(a)) = g′(f(a)). Consider

lim
y→f(a)

h(y) = h(f(a)) = g′(f(a)).

Hence, h is continuous at f(a). Now

g(y)− g(f(a)) = h(y)(y − f(a)) ∀y ∈ dom(g).

Let y = f(x), x ∈ dom(g ◦ f).

(g ◦ f)(x)− (g ◦ f)(a) = h(f(x))(f(x)− f(a))

(g ◦ f)(x)− (g ◦ f)(a)
x− a

=
h(f(x))(f(x)− f(a))

x− a
.

Taking the limit,
(g ◦ f)′(a) = g′(f(a))f ′(a).
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§18 November 15th, 2022
§18.1 Derivative properties

Theorem 18.1
If f is defined on an open interval x0, and f assumes a min/max at x0, and
f is differentiable at x0, then f ′(x0) = 0.

Proof. Suppose f is defined on (a, b) with a < x0 < b. Suppose the max is at x0.
If f ′(x0) > 0, then

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
> 0.

Pick ε = f ′(x0). ∃δ s.t. 0 < |x− x0| < δ, then∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < f ′(x0).

−f ′(x0) <
f(x)− f(x0)

x− x0
− f ′(x0) < f ′(x0).

0 <
f(x)− f(x0)

x− x0
.

Thus, there is a point x ∈ (x0, x0 + δ) such that f(x) > f(x0).

Theorem 18.2 (Rolle’s theorem)
Let f be a continuous function on [a, b] that is differentiable on (a, b) and
satisfies f(a) = f(b). Then ∃x ∈ (a, b) s.t. f ′(x) = 0.

Proof. By a previous theorem, f is bounded and achieves its bounds. Then
∃x0, y0 ∈ [a, b] s.t. f(x) ∈ [f(x0), f(y0)]∀x ∈ [a, b].

Clearly if x0 and y0 are both endpoints, then x0 = y0, and f(x) = x0 is
constant.

Otherwise, f assumes a maximum/minimum at x ∈ (a, b), in which case
f ′(x) = 0.

This can be generalized to,

Theorem 18.3 (Mean value thoerem)
Let f be continuous on [a, b] and differentiable on (a, b). Then ∃x ∈ (a, b)
s.t.

f ′(x) =
f(b)− f(a)

b− a
.
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Proof. Let L(x) = f(a) + (x−a)
b−a (f(b) − f(a)). Then L′(x) = f(b)−f(a)

b−a . Let
g(x) = f(x)− L(x) and g(a) = 0 = g(b). Rolle’s theorem tells us that g′(x) = 0,
so f ′(x) = L′(x) = f(b)−f(a)

b−a .

Corollary 18.4
Let f be differentiable on (a, b) s.t. f ′(x) = 0, ∀x ∈ (a, b). Then f is a
constant function on (a, b).

Proof. If non-constant, ∃x1, x2 s.t. a < x1 < x2 < b and f(x1) 6= f(x2). Ap-
plying theorem 18.3 to x1, x2, ∃x ∈ (x1, x2) s.t. f ′(x) = f(x1)−f(x2)

x1−x2
is non-zero,

contradicting our assumption.

Corollary 18.5
If f , g are differentiable on (a, b) and f ′ = g′ on (a, b), then ∃c ∈ R s.t.
f(x) = g(x) + c,∀x ∈ (a, b).

Proof. Apply the previous corollary to f − g. Then f(x)− g(x) = c ∈ R. Then
f(x) = g(x) + C.

Corollary 18.6
Let f be differentiable on (a, b). Then

• f is strictly increasing if f ′(x) > 0∀x ∈ (a, b)

• f is increasing if f ′(x) ≥ 0∀x ∈ (a, b)

Proof. Consider x1, x2 s.t. a < x1 < x2 < b. theorem 18.3 tells us that ∃x s.t.
f(x2)−f(x1)

x2−x1
= f ′(x) > 0.

Theorem 18.7 (IVT for derivatives)
Let f be differentiable on (a, b). Whenever a < x1 < x2 < b and c is between
f ′(x1), f

′(x2), ∃x ∈ (x1, x2) s.t. f ′(x) = c.

Proof. WLOG f ′(x1) < c < f ′(x2). Let g(x) = f(x) − cx for x ∈ (a, b). Then
g′(x1) < 0 < g′(x2). A previous theorem tells us that g assumes its minimum on
x0 ∈ [x1, x2].

g′(x1) = lim
y→x1

g(y)− g(x1)

y − x1
< 0.
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Hence, g(y) − g(x1) < 0 close to x1 or g(y) < g(x1). Therefore, x1 is not a
minimum. Similarly, we can show x2 is not a minimum. g′(x0) = 0 by a previous
theorem, so f ′(x0) = g′(x0) + c = c.
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§19 November 17th, 2022
§19.1 Exam review
Question 19.1 (Exam Question 5). Consider the function defined on [0,∞) as

g(x) =

{
x(1− x) if 0 ≤ x ≤ 1

0 if x > 1

Let fn(x) = g(nx).

a) What is the maximum value of g, and where is it attained?

b) Sketch the functions f1(x), f2(x), f3(x) on [0, 1].

c) Does fn pointwise converge to some f .

d) Does fn → f uniformly?

Only 50% of the class got (b)’s sketch correctly. No one got (c), (d) w/o the
correct sketch for (b).

Solution. Taking g(x) 7→ g(2x) is the same as geometrically scaling it by 1
2 along

the x-axis. These sketches allow the rest of the problem to be finished.

§19.2 More differentiation
Let f be an injective differentiable on an interval I. We try to conclude that
(f−1)′(y0) =

1
f ′(x0)

. However, this requires assuming (f−1)′ exists.

Theorem 19.1
Let f be an injective continuous function on an open interval I, and let
J = f(I). If f is differentiable at x0 ∈ I and f ′(x0) 6= 0, then f−1 is
differentiable at y0 = f(x0), and

(f−1)′(y0) =
1

f ′(x0)
.

Proof. J is an open interval as well, so

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0).

Choose ε > 0. ∃δ > 0 s.t.

0 < |x− x0| < δ =⇒
∣∣∣∣ x− x0
f(x)− f(x0)

− 1

f ′(x0)

∣∣∣∣ < ε.

Let g = f−1. g is continuous at y0. ∃η > 0 s.t.

0 < |y − y0| < η =⇒ |g(y)− g(y0)| < δ =⇒ |g(y)− x0| < δ.
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Hence, ∣∣∣∣ g(y)− x0
f(g(y))− f(x0)

− 1

f ′(x0)

∣∣∣∣ = ∣∣∣∣ g(y)− g(y0)

f(g(y))− f(x0)
− 1

f ′(x0)

∣∣∣∣ < ε

for arbitrarily small ε. Therefore,

lim
y→y0

g(y)− g(y0)

y − y0
=

1

f ′(x0)
.

§19.2.1 L’Hôpital’s rule

Consider a generic limit

lim
x→s

f(x)

g(x)
,

where the limit of f and g are both 0.

Example 19.2 (sinc function). sinc x = sin x
x satisfies these properties. We can find

limx→0 sinc x = 1.

Theorem 19.3 (Generalized MVT)
Let f , g be continuous on [a, b] and differentiable on (a, b). Then ∃x ∈ (a, b)
s.t. f ′(x)(g(b)− g(a)) = g′(x)(f(b)− f(a)).

Note that if we let g(x) = x, then get the original MVT.

Proof. Let
h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a)).

h(a) = f(a)g(b)− f(b)g(a) = h(b).

h satisfies theorem 18.2, so ∃x ∈ (a, b) s.t. h′(x) = 0. The result follows from
considering h′(x).

Theorem 19.4 (L’Hôpital’s rule)
Suppose f, g are differentiable, let s be any limit. Suppose

lim
x→s

f ′(x)

g′(x)
= L

exists. If limx→s f(x) = limx→s g(x) = 0, or limx→s |g(x)| = ∞, then

lim
x→s

f(x)

g(x)
= L.

Proof. Consider limn→a+ or limx→−∞. We will show
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Claim 19.5 — If −∞ ≤ L < ∞ and L1 > L ∃α1 > a s.t. a < x < α1 =⇒
f(x)
g(x) < L1.

Proof. Let (a, b) be an interval on which f and g are differentiable and on which
g′ never vanishes.

Either g′(x) > 0 ∀x ∈ (a, b) or g′(x) < 0 ∀x ∈ [a, b], which follows from IVT
for derivatives.

Assume g′(x) < 0. Then g is strictly decreasing and injective. g(x) = 0 for at
most one x ∈ (a, b). We choose b smaller than this value to ensure g does not
vanish.

Choose L < K < L1. ∃α s.t. a < x < α =⇒ f ′(x)
g′(x) < K.

If a < x < y < α, ∃z ∈ (x, y) s.t.

f(x)− f(y)

g(x)− g(y)
=

f ′(z)

g′(z)
< K

• Case 1: limx→a+ f(x) = limx→a+ g(x) = 0.

lim
x→a+

f(x)− f(y)

g(x)− g(y)
=

f(y)

g(y)
≤ K < L1.

• Case 2: limx→a+ g(x) = ∞. We multiply an above expression by g(x)−g(y)
g(x)

to get
f(x)

g(x)
< K +

f(y)−Kg(y)

g(x)
.

Note
lim

x→a+

f(y)−Kg(y)

g(x)
= 0.

So ∃α2 > a s.t. a < x < α2 and f(x)
g(x) < L1. �

Claim 19.6 — If −∞ < L ≤ ∞ and L2 < L, ∃α2 > a s.t. a < x < α2 =⇒
f(x)
g(x) > L2.

Proof. Similar to the last proof. �

Suppose L is finite. Then

∃a < x < α1 =⇒ f(x)

g(x)
< L+ ε,

∃a < x < α2 =⇒ f(x)

g(x)
< L− ε.

Define α = min {α1, α2}.

a < x < α =⇒
∣∣∣∣f(x)g(x)

− L

∣∣∣∣ < ε,

finishing our proof.
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§20 November 22nd, 2022
§20.1 Prerequisites for Taylor series

Theorem 20.1
Suppose

∑∞
n=0 cnx

n converges for |x| < R and define f(x) =
∑∞

n=0 cnx
n for

|x| < R. Then f ′(x) =
∑∞

n=1 ncnx
n−1.

Proof. Use lim sup |cnn|1/n = lim sup |cn|1/n.

Theorem 20.2
Suppose {fn} is a sequence of differentiable functions on [a, b] s.t. {fn(x0)}
converges for x0 ∈ [a, b]. If {f ′

n} converges uniformly on [a, b], then fn
converges uniformly on [a, b] to f and f ′(x) = limn→∞ f ′

n(x).

Proof. Choose ε > 0 and N s.t. m,n > N implies

|fn(x0)− fm(x0)| <
ε

2
,

and ∣∣f ′
n(t)− f ′

m(t)
∣∣ < ε

2(b− a)
, such that t ∈ [a, b].

Apply theorem 18.3 to fn − fm. Thus, ∃y0 ∈ (x, t) s.t.

|fn(x)− fm(x)− fn(t) + fm(t)|
|x− t|

=
∣∣f ′

n(y0)− f ′
m(y0)

∣∣ .
Thus,

|fn(x)− fm(x)− fn(t) + fm(t)| ≤ |x− t| ε
2(b− a)

<
(b− a)ε

2(b− a)
=

ε

2
.

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− fn(x0) + fm(x)|+ |fn(x)− fm(x0)| <
ε

2
+

ε

2
.

fn converges uniformly. Let f(x) = limn→∞ fn(x).
For the next part, consider x, t ∈ [a, b] x 6= t.

φn(t) =
fn(t)− fn(x)

t− x
φ(t) =

f(t)− f(x)

t− x
.

limt→x φn(t) = f ′
n(x). Since fn → f uniformly, φn converges uniformly. ∃N s.t.

n,m > N =⇒
|φn(t)− φm(t)| < ε

2(b− a)
,

and limt→x φn(t) = φ(t). This is the same setup as the last part, so we can
conclude that

lim
t→x

φ(t) = lim
n→∞

f ′
n(x) = f ′(x).
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§20.2 Taylor series
Consider the power series f(x) =

∑∞
k=0 akx

k. Then f ′(x) =
∑∞

k=1 kakx
k−1, and

generally, f (n)(x) =
∑∞

k=n k(k − 1) · · · (k − n+ 1)akx
k−n. Then f (n)(0) = n!an.

This motivates,

Definition 20.3. The Taylor series of f about 0 is the power series

f(x) =

∞∑
k=0

f (k)(0)

k!
xk.

The remainder is defined as

Rn(x) := f(x)−
n−1∑
k=0

f (k)(0)

k!
xk

f equal its Taylor series if and only if limn→∞Rn(x) = 0.

Theorem 20.4 (Taylor’s theorem)
Let f be defined on (a, b) where a < 0 < b and suppose the nth derivative
f (n) exists on (a, b). Then for each non-zero x ∈ (a, b), ∃y between 0 and x

s.t. Rn(x) =
f (n)(y)xn

n! .

Proof. Fix x 6= 0. Assume that x > 0. Let M be the unique sol’n of

f(x) =
n−1∑
k=0

f (k)(0)

k!
xk +

Mxn

n!
.

Let

g(t) =

n−1∑
k=0

f (k)(0)

k!
tk +

Mtn

n!
− f(t).

g(0) = f(0) − f(0) = 0, and g(k)(0) = 0 for k < n. In addition, g(x) = 0. By
theorem 18.2, ∃x1 ∈ (0, x) s.t. g′(x1) = 0. We can apply Rolle’s theorem again, so
∃x2 ∈ (0, x1) s.t. g′′(x2) = 0. We can recursively apply this to find xn ∈ (0, xn−1)
s.t. g(n)(xn) = 0.

Then g(n)(t) = n!M
n! − f (n)(t). f (n)(x) = M , proving the result.

Corollary 20.5
Let f be defined on (a, b) where a < 0 < b. If all derivatives f (n) exist
on (a, b) and are bounded by a single C, then limn→∞Rn(x) = 0 for all
x ∈ (a, b).

Proof. |Rn(x)| ≤ C
n! |x|

n. limn→∞Rn(x) = 0.

62



Pramana (Fall 2022) MATH 521 - Analysis I Notes

Definition 20.6. Let f be a function on an interval containing x0 ∈ R. If f has
derivatives of all order at x0, then

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k,

is the Taylor series of f about x0.

§20.3 Riemann integration
Consider a bounded function on a closed interval [a, b]. For S ⊆ [a, b], define

M(f, S) = sup {f(x) | x ∈ S} , m(f, S) = inf {f(x) | x ∈ S} .

Define a partition of [a, b] as any finite ordered subset

P = {a = t0 < t1 < · · · < tn = b} .

The upper Darboux sum U(f, P ) of f w.r.t. P is

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk])(tk − tk−1),

and the lower Darboux sum is

L(f, P ) =

n∑
k=1

m(f, [tk−1, tk])(tk − tk−1).

We see that

m(f, [a, b])(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(f, [a, b])(b− a).

Define integrals as

U(f) = inf {U(f, P ) | P is a partition of [a, b]} ,

L(f) = sup {L(f, P ) | P is a partition of [a, b]} .
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§21 November 29th, 2022
§21.1 Darboux integrals
The bounds imply that U(f) and L(f) are real numbers, and L(f) ≤ U(f). We
say f is integrable on [a, b] if L(f) = U(f). Then∫ b

a
f =

∫ b

a
f(x)dx = L(f) = U(f).

We call this the Darboux integral.

Example 21.1 (Darboux integration proof). Consider f(x) = x3 and
∫ b

0
f . For the

partition P = {0 = t0 < t1 < · · · < tn = b}. Define tn = kb
n .

Then

U(f, P ) =

n∑
k=1

t3k(tk − tk−1)

=
b4

n4

n∑
k=1

k3

=
b4

n4

(
n(n+ 1)

2

)2

=
b4

4

(
1 +

2

n
+

1

n2

)
.

And

L(f, p) =

n∑
k=1

t3k−1(tk − tk−1)

=
b4

n4

n∑
k=1

(k − 1)3

=
b4

n4

n−1∑
`=1

`3

=
b4

n4

(
(n− 1)n

2

)2

=
b4

4

(
1− 2

n
+

1

n2

)
.

As n → ∞, U(f, P ) → b4

4 , so U(f) ≤ b4

4 . Similarly, L(f) ≥ b4

4 . Therefore,
L(f) = U(f) = b4

4 , and f integrable on [0, b].

Lemma 21.2
For partitions P,Q of [a, b] s.t. P ⊆ Q,

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).
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Proof. WLOG suppose P = {a = t0 < t1 < · · · < tn = b}, and
Q = {a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b}. Then

L(f,Q)− L(f, P ) = m(f, [tk−1, u])(u− tk−1) +m(f, [u, tk])(tk − u)

−m(f, [tk−1, tk])(tk − tk−1).

Note

m(f, [tk−1, tk])(tk − tk−1) = m(f, [tk−1, tk])(tk − u) +m(f, [tk−1, tk])(u− tk−1)

≤ m(f, [tk−1, u])(u− tk−1) +m(f, [u, tk])(tk − u).

Hence, L(f,Q)− L(f, P ) ≥ 0.

Lemma 21.3
For partitions P,Q on [a, b], L(f, P ) ≤ U(f,Q).

Proof. P ∪Q is also a partition of [a, b] yielding

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

Proposition 21.4
L(f) ≤ U(f).

Proof. This follows from the properties of limits.

Theorem 21.5 (Integrable ε proof)
A bounded function f on [a, b] is integrable iff ∀ε > 0, ∃ a partition P s.t.
U(f, P )− L(f, P ) < ε.

Proof. Suppose f integrable. ∃ P1, P2 s.t.

L(f, P1) > L(f)− ε

2
,

L(f, P2) < U(f) +
ε

2
.

For P = P1 ∪ P2,

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) < U(f)− L(f) + ε.

Since f is integrable, U(f) = L(f), leading to the conclusion.
Consversely, suppose that ∃ε > 0 s.t. the statment holds. Then

U(f) ≤ U(f, P ) = U(f, P )− L(f, P ) + L(f, P ) < ε+ L(f).

Since ε is arbitrary, U(f) ≤ L(f) =⇒ U(f) = L(f).
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Example 21.6 (Non-Riemann integrable function). 1Q on [0, 1] has all U(f) =
1, L(f) = 0, since rationals and irrationals are dense in the reals.

Definition 21.7. The mesh of a partition P is the maximum length of subin-
tervals comprising P . If P = {a = t0 < t1 < · · · < tn = b}, then

mesh(P ) = max
1≤k≤n

{tk − tk−1} .

Theorem 21.8 (Integrable δ-ε proof)
A bounded function f on [a, b] is integrable iff for each ε > 0, ∃δ > 0 s.t.
mesh(P ) < δ =⇒ U(f, P )− L(f, P ) < ε for all partitions P .

Proof. Suppose f is integrable. Let ε > 0 and P0 is a partition of [a, b] s.t.

U(f, P0)− L(f, P0) <
ε

2
.

Since f is bounded, ∃B > 0 s.t. |f(x)| ≤ B∀x ∈ [a, b]. Let δ = ε
8mB where m is

the number of intervals on P0.
Let P be a partiton of [a, b] with mesh(P ) < δ, and Q = P ∪ P0. If Q has one

more element than P ,

L(f,Q)− L(f, P ) ≤ Bmesh(P )− (−B)mesh(P ) = 2Bmesh(P ).

Q has at most m elements not in P , hence

L(f,Q)− L(f, P ) ≤ 2mB ·mesh(P ) =
ε

4
.

Then L(f, P0)− L(f, P ) < ε
2 . Similarly, U(f, P0)− U(f, P ) < ε

4 .

U(f, P )− L(f, P ) < U(f, P0)− L(f, P0) +
ε

2
< ε.

Converse follows easily from definitions.

These two theorems give ways to show specific properties of integrable (bounded)
functions.

Theorem 21.9
Every continuous function on [a, b] is integrable.

Proof. Consider ε > 0. Since f in uniformly continuous on [a, b], ∃δ > 0 s.t.
|x− y| < δ =⇒ |f(x)− f(y)| < ε

b−a .
Consider a partition P = {a = t0 < · · · < tn = b} s.t. mesh(P ) < δ. Within

any interval [tk−1, tk], |f(x)− f(y)| < ε
b−a . Hence,

M(f, [tk−1, tk])−m(f, [tk−1, tk]) <
ε

b− a
.

So U(f, P )− L(f, P ) <
∑n

k=1
ε

b−a(tk − tk−1) = ε.
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§22 December 1st, 2022
§22.1 Darboux integration results

Theorem 22.1
Every monotonic function f on [a, b] is integrable.

Proof. WLOG assume f increasing and f(a) < f(b). f is bounded on [a, b].
Choose ε > 0, and a partition P = {a = t0 < · · · < tn = b} with mesh(P ) <

ε
f(b)−f(a) . Then

U(f, P )− L(f, P ) =

n∑
k=1

(M(f, [tk−1, tk])−m(f, [tk−1, tk]))(tk − tk−1)

M(f, [tk−1, tk]) − m(f, [tk−1, tk]) gets simplified to f(tk) − f(tk−1) since f is
increasing.

U(f, P )− L(f, P ) =

n∑
k=1

(f(tk)− f(tk−1))(tk − tk−1)

<
ε

f(b)− f(a)

n∑
k=1

(f(tk)− f(tk−1))

= ε.

§22.2 Riemann sums and integrals
Definition 22.2. Let f be bounded function on [a, b], and P = {a = t0 < · · · < tn = b}
be a partition. A Riemann sum of f associated with P is a sum of the form

n∑
k=1

f(xk)(tk − tk−1),

where xk ∈ [tk−1, tk].
A function is Riemann integrable on [a, b] if ∃r s.t. ∀ε > 0, ∃δ > 0 s.t.

|S − r| < ε for every Riemann sum S of f s.t. mesh(P ) < δ.

If so, r is the Riemann integral of f on [a, b], denoted R
∫ b
a .

The next result shows that Riemann integration is just Darboux integration.

Theorem 22.3
A bounded function f on [a, b] is Riemann integrable iff it is Darboux
integrable.
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Proof. ( =⇒ ) Suppose f Darboux integrable. Let ε > 0, and choose δ s.t.
theorem 21.8 is true. We have

L(f, P ) ≤ S ≤ U(f, P ).

U(f, P ) < L(f, P ) + ε ≤ L(f) + ε =

∫ b

a
f + ε,

and
L(f, P ) > U(f)− ε =

∫ b

a
f − ε.

Therefore, ∫ b

a
f − ε < S <

∫ b

a
f + ε =⇒

∣∣∣∣S −
∫ b

a
f

∣∣∣∣ < ε.

( ⇐= ) Suppose f is Riemann integrable. Consider ε > 0. ∃δ and r s.t.
mesh(P ) < δ and Riemann sum S,

|S − r| < ε.

Choose xk ∈ [tk−1, tk] s.t. f(xk) < m(f, [tk−1, tk]) + ε. Do this for all intervals.

S < L(f, P ) + ε(b− a).

L(f) ≥ L(f, P ) ≥ S − ε(b− a) > r − ε− ε(b− a).

Since ε is arbitrary, L(f) ≥ r. Similarly, U(f) ≤ r. Then L(f) = U(f), so f is
Darboux integrable.

Proposition 22.4 (Riemann/Darboux integration properties)
If f and g are integrable functions on [a, b],

1. cf is integrable, and
∫ b
a cf = c

∫ b
a f .

2. f + g is integrable, and
∫ b
a f + g =

∫ b
a f +

∫ b
a g.

Proof. (1) Suppose c > 0. For a given partition,

M(cf, [tk−1, tk]) = cM(f, [tk−1, tk]).

Hence, U(cf, P ) = cU(f, P ). Therefore, U(cf) = cU(f). Similarly, L(cf) =

cL(f). This shows
∫ b
a cf = c

∫ b
a f . For negative c, you would have to flip U and

L.
(2) Choose ε > 0. ∃ partitions P1, P2 such that

U(f, P1)− L(f, P1) <
ε

2
, U(g, P2)− L(g, P2) <

ε

2
.

Let P = P1 ∪ P2,

U(f, P )− L(f, P ) <
ε

2
, U(g, P )− L(g, P ) <

ε

2
.
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To connect these two, note

inf {f(x) + g(x)} ≥ inf {f(x)}+ inf {g(x)} , (∀x ∈ S)

m(f + g, S) ≥ m(f, S) +m(g, S),

L(f + g, P ) ≥ L(f, P ) + L(g, P ), U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Therefore,
U(f + g, P )− L(f + g, P ) < ε,

as desired. To show the specific value, we use the same partition P . We find that

U(f, P ) + U(g, P ) < L(f, P ) + L(g, P ) + ε

by the last equation. Thus,∫ b

a
f + g = U(f + g) ≤ U(f + g, P )

≤ U(f, P ) + U(g, P ) < L(f, P ) + L(g, P ) + ε

≤ L(f) + L(g) + ε

=

(∫ b

a
f +

∫ b

a
g

)
+ ε.

Similarly, ∫ b

a
f + g >

(∫ b

a
f +

∫ b

a
g

)
− ε.

Since ε is arbitrary,
∫ b
a f + g =

∫ b
a f +

∫ b
a g.

Proposition 22.5
If f and g are integrable on [a, b] and f(x) ≤ g(x)∀x ∈ [a, b], then

∫ b
a f ≤

∫ b
a g.

Proof. proposition 22.4 shows that h = g−f is integrable on [a, b]. h(x) ≥ 0∀x ∈
[a, b] implies L(h, P ) ≥ 0 for any partition P . So∫ b

a
g −

∫ b

a
f =

∫ b

a
h = L(h) ≥ 0,

from which the inequality follows.

Proposition 22.6 (“Triangle” inequality for integrals)

If f is integrable on [a, b], then |f | is integrable on [a, b] with
∣∣∣∫ b

a f
∣∣∣ ≤ ∫ b

a |f |.
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Proof. Consider S ⊆ [a, b].

M(|f | , S)−m(|f | , S) = sup {|f(x)| : x ∈ S} − inf {|f | : x ∈ S}
= sup {|f(x)| : x ∈ S}+ sup {− |f | : x ∈ S}
= sup {|f(x)| − |f(y)| : x, y ∈ S}
≤ sup {|f(x)− f(y)| : x, y ∈ S}
= sup {f(x)− f(y) : x, y ∈ S}
= M(f, S)−m(f, S).

Thus,
U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ).

Choose ε > 0. Then ∃P s.t.

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ) < ε.

Since −|f | ≤ f ≤ |f |, it follows from proposition 22.5 that

−
∫ b

a
|f | ≤

∫ b

a
f ≤

∫ b

a
|f | =⇒

∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |

Proposition 22.7
Let f be on [a, b] If a < c < b and f is integrable on [a, c] and [c, b], then f

is integrable on [a, b] and
∫ b
a f =

∫ c
a f +

∫ b
c f .

Definition 22.8. A function is piecewise monotonic if ∃ a partition P =
{a = t0 < · · · < tn = b} s.t. f is monotonic on (tk−1, tk) for 1 ≤ k ≤ n.

The function is piecewise continuous if ∃ a partition P of [a, b] s.t. f is
uniformly continuous on (tk−1, tk).

Both of these types of functions are integrable.
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§23 December 6th, 2022
§23.1 Intermediate value theorem for integrals

Theorem 23.1 (IVT for integrals)
If f is a continuous function on [a, b], then for at least one x ∈ [a, b],

f(x) =
1

b− a

∫ b

a
f.

f(x) is the averange value of the function on [a, b].

Proof. Let m and M be the minimum and maximum of f on [a, b] respectively.
If m = M , then f is constant and the result holds for all x ∈ [a, b].

Otherwise, m < M , and then ∃x0 6= y0 s.t. f(x0) = m, f(y0) = M . Consider
M − f and f −m, which are non-negative and not identically zero. By previous
results,

∫ b
a M − f ≥ 0,

∫ b
a f −m ≥ 0. Moreover, the inequality is strict, since f is

continuous (see HW8 Q1). Therefore,∫ b

a
m <

∫ b

a
f <

∫ b

a
M

(b− a)m <

∫ b

a
f < (b− a)M

m <
1

b− a

∫ b

a
f < M.

Apply theorem 12.8 between x0, y0 to get the desired x.

§23.2 Fundamental theorems of calculus

Theorem 23.2 (The fundamental theorem of calculus)
If g is continuous on [a, b] and differentiable on (a, b) and g′ integrable on
[a, b], then ∫ b

a
g′ = g(b)− g(a).

Proof. Choose ε > 0. ∃P = {a = t0 < · · · < tn = b} of the interval [a, b] s.t.

U(g′, P )− L(g′, P ) < ε.

Apply theorem 18.3 to each interval [tk−1, tk]. ∃xk ∈ (tk−1, tk) s.t.

(tk − tk−1)g
′(xk) = g(tk)− g(tk−1).
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Hence,

g(b)− g(a) =
n∑

k=1

(g(tk)− g(tk−1))

=
n∑

k=1

g′(xk)(tk − tk−1),

giving us
n∑

k=1

m(g′, [tk−1, tk])(tk − tk−1) ≤ g(b)− g(a) ≤
n∑

k=1

M(g′, [tk−1, tk])(tk − tk−1).

So

L(g′, P ) ≤ g(b)− g(a) ≤ U(g′, P ),

L(g′, P ) ≤
∫ b

a
g′ ≤ U(g′, P ),

are both true. Therefore, ∣∣∣∣∫ b

a
g′ − (g(b)− g(a))

∣∣∣∣ < ε.

Since ε is arbitrary,
∫ b
a g′ = g(b)− g(a).

Theorem 23.3 (Integration by parts)
Suppose that u, v continuous on [a, b] and differentiable on (a, b). If u′, v′
integrable on [a, b], then∫ b

a
uv′ −

∫ b

a
u′v = u(b)v(b)− u(a)v(a).

Proof. Let g = uv =⇒ g′ = uv′ + u′v. Products on integrable functions are
integrable (exercise), so∫ b

a
g′ = g(b)− g(a) = u(b)v(b)− u(a)v(a).

Replacing g′ with uv′ + u′v finishes.

Theorem 23.4 (The fundamental theorem of calculus II)
Let f be integrable on [a, b]. For x ∈ [a, b], let F (x) =

∫ x
a f(t)dt. Then

1. F is continuous on [a, b].

2. If f continuous at x0 ∈ (a, b), then F is differentiable at x0 and
F ′(x0) = f(x0).
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Proof. Choose B > 0 s.t. |f(x)| ≤ B. If x, y ∈ [a, b] x < y with |x− y| < ε
B ,

then

|F (y)− F (x)| =
∣∣∣∣∫ y

x
f(t)dt

∣∣∣∣ ≤ ∫ y

a
|f(t)| dt ≤

∫ y

x
Bdt = B(y − x) < ε.

=⇒ F is uniformly continuous.
Suppose f continuous at x0 ∈ (a, b). Then

F (x)− F (x0)

x− x0
=

1

x− x0

∫ x

x0

f(t)dt,

and
f(x0) =

1

x− x0

∫ x

x0

f(x0)dt.

F (x)− F (x0)

x− x0
− f(x0) =

1

x− x0

∫ x

x0

f(t)− f(x0)dt.

Choose ε > 0. Since f continuous, ∃δ > 0 s.t. t ∈ (a, b) and |t− x0| < δ, then
|f(t)− f(x0)| < ε. Therefore,∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ ε =⇒ F ′(x0) = lim
x→x0

F (x)− F (x0)

x− x0
= f(x0).

It seems inconvenient that the first inequality is ≤ ε vs. < ε, but we can see that
if we take ε 7→ ε

2 , then the proof can conclude with a strict “less than.”

§23.3 Change of variables

Theorem 23.5 (Change of variables)
Let u be a differentiable function on the open interval J s.t. u′ continuous
and let I be an open interval s.t. u(J) = I If f is continuous on I, then
f ◦ u is continuous on J and∫ b

a
f ◦ u(x)u′(x)dx =

∫ u(b)

u(a)
f(u)du

for a, b ∈ J .

Proof. f ◦ u is continuous by previous result. Chooose c ∈ I and let F (u) =∫ u
c f(t)dt. Then F ′(u) = f(u) by theorem 23.4. Let f = F ◦ u. Then

g′(x) = F ′(u(x))u′(x) = f(u(x))u′(x).
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Then ∫ b

a
f ◦ u(x)u′(x)dx =

∫ b

a
g′(x)dx

= g(b)− g(a)

= F (u(b))− F (u(a))

=

∫ u(b)

c
f(t)dt−

∫ u(a)

c
f(t)dt =

∫ u(b)

u(a)
f(t)dt

§23.4 Improper integrals
Consider an interval [a, b) where b ∈ R ∪ {∞}. Suppose f is a function that is
integrable on each [a, d] for a < d < b and

lim
d→b−

∫ d

a
f(x)dx

evaluates to a number in R. Then∫ b

a
f(x)dx = lim

d→b−

∫ d

a
f(x)dx.

If the interval is (a, b] instead and f is integrable on [c, b] for all a < c < b, then∫ b

a
f(x)dx = lim

c→a+

∫ b

c
f(x)dx.

For f on (a, b) and integrable on all closed subintervals [c, d], then∫ b

a
f(x)dx =

∫ α

a
f(x)dx+

∫ b

α
f(x)dx, α ∈ (a, b).
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§24 December 8th, 2022
§24.1 Cauchy principal value
Consider ∫ ∞

−∞

x

1 + x2
dx.

As x → ∞, the function gets close to 1
x , and x → −∞, the function gets close to

− 1
x . By the regular definition, we can

∫ ∞

−∞

x

1 + x2
dx =

∫ α

−∞

x

1 + x2
dx+

∫ ∞

α

x

1 + x2
dx

= lim
a→−∞

∫ α

a

x

1 + x2
dx︸ ︷︷ ︸

−∞

+ lim
b→∞

∫ b

α

x

1 + x2
dx︸ ︷︷ ︸

∞

.

So the integral value does not exist. Using the Cauchy principal value, we
take the limit concurrently to −∞ and ∞.

P

∫ ∞

−∞

x

1 + x2
dx = lim

a→∞

∫ a

−a

x

1 + x2
dx

= lim
a→∞

0

= 0

§24.2 Continuity in metric spaces
Consider metric spaces (S, d), (S∗, d∗). Consider maps f : S → S∗.

Definition 24.1. f : S → S∗ is continuous at s0 ∈ S if

∀ε > 0, ∃δ > 0 s.t. d(s, s0) < δ =⇒ d∗(f(s), f(s0)) < ε.

A function f is continuous on E ⊆ S if f is continuous at each point of E. A
function is uniformly continuous on E ⊆ S if

∀ε > 0, ∃δ > 0 s.t. if s, t ∈ E and d(s, t) < δ =⇒ d∗(f(s), f(t)) < ε.

If S = S∗ = R and d = d∗ is the Euclidean metric, then these match the typical
definitions.

Definition 24.2. A path is a continuous mapping γ : R → Rk. The image γ(R)
is called a curve.

Example 24.3. An ellipse is a path: γ(t) = (a cos t, b sin t).
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Proposition 24.4
If f1, f2, . . . , fk are continuous functions that are real-valued (R → R), then

γ(t) = (f1(t), . . . , fk(t))

defines a path in Rk.

Proof. We need to show that γ is continuous. Pick x,y ∈ Rk. Then

d∗(x,y) =

 k∑
j=1

(xj − yj)
2

 1
2

≤
(
k

k
max
j=1

(xj − y − j)2
) 1

2

=
√
k

k
max
j=1

|xj − yj | .

Consider t0 ∈ R and ε > 0. For j = 1, . . . , k, ∃δj > 0 s.t.

|t− t0| < δj =⇒ |fj(t)− fj(t0)| <
ε√
k
.

If δ = min {δ1, . . . , δk}, and |t− t0| < δ, then we can find

{max |fj(t)− fj(t0)| : 1 ≤ j ≤ k} <
ε√
k
,

so
d∗(γ(t), γ(t0)) ≤

√
k {max |fj(t)− fj(t0)| : 1 ≤ j ≤ k} < ε.

Theorem 24.5
Suppose that (S, d), (S∗, d∗) are two metric spaces. f : S → S∗ is continuous
on S iff f−1(U) is an open subset of S for every open subset U of S∗.

Proof. Suppose that f is continuous on S. Let U be an open subset of S∗.
Consider any s0 ∈ f−1(U) =⇒ f(s0) ∈ U . Since U is open, ∃ε > 0 s.t.

{s∗ ∈ S | d∗(s∗, f(s0)) < ε} = Nε(f(s0)) ⊆ U.

Since f is continuous at s0, ∃δ > 0 s.t.

d(s, s0) < δ =⇒ d∗(f(s), f(s0)) < ε =⇒ f(s) ∈ U =⇒ s ∈ f−1(U).

In other words, Nδ(s0) ⊆ U . Hence, s0 is an interior pt. and f−1(U) is open.
Suppose that converse property holds. Consider s0 ∈ S. Choose ε > 0, and

examine Nε(f(s0)). Then F = f−1(Nε(f(s0))) is open by the assumption. For
any s0 ∈ F , ∃δ > 0 s.t. Nδ(s0) ⊆ F . Hence, if d(s, s0) < δ, then d∗(f(s), f(s0)) <
ε.
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Theorem 24.6
Let (S, d) and (S∗, d∗) be metric spaces, and let f : S → S∗ be continuous.
Suppose that E is a compact subset of S. Then

1. f(E) is a compact subset of S∗.

2. f is uniformly continuous on E.

Proof. (1) Let U be an open cover of f(E). For each U ∈ U , f−1(U) is open in S.
Also,

{
f−1(U) : U ∈ U

}
is a cover of E. x ∈ E =⇒ f(x) ∈ f(E) and f(x) ∈ U ′

for some U ′ so x ∈ f−1(U ′).
Since E is compact, ∃U1, . . . , Um ∈ U s.t. E ⊆

⋃m
i=1 f

−1(Ui). So {U1, . . . , Um}
is a finite subcover of f(E).

(2) Choose ε > 0. For s ∈ E ∃δs > 0 s.t. d(s, t) < δs =⇒ d∗(f(s), f(t)) < ε
2 .

Define sets Vs :=
{
t ∈ S | d(s, t) < δs

2

}
. V := {Vs | s ∈ E} is an open cover of E.

By compactness, ∃Vs1 , . . . Vsn that covers E.
Define δ = 1

2 min {δ1, . . . , δn}
Consider s, t ∈ E with d(s, t) < δ. Since s ∈ Vsk for some sk, then d(s, sk) <

δsk
2 .

Then
d(t, sk) ≤ d(t, s) + d(s, sk) < δ +

δsk
2

< δsk .

Thus,

d(t, sk), d(s, sk) < δsk =⇒ d∗(f(s), f(sk)), d
∗(f(t), f(sk)) <

ε

2
,

implying
d∗(f(s), f(t)) < ε.

Corollary 24.7
Let f : (S, d) → R be continuous and S compact. Then for E ⊆ S,

1. f is bounded on E.

2. f assumes its minimum/maximum on E.

Proof. f(E) compact on R =⇒ f(E) is closed and bounded by theorem 11.8.

77



Pramana (Fall 2022) MATH 521 - Analysis I Notes

§A Appendix
§A.1 p-norms
Let the p-norm of a vector z be

‖z‖p =
p

√√√√ k∑
i=1

|zi|p.

Note that the Euclidean norm is just the 2-norm.
When p is large,

‖z‖∞ =
k

max
i=1

{|zi|} .

Note now that the solutions to ‖x‖p = 1 for p = 1 is a diamond, p = 2 a circle,
p = 4 a superellipse, and p = ∞ a square.

§A.2 History of power series approximations
To approximate π, James Gregory (1638-1675) created the power series

tan−1 x = x− x3

3
+

x5

5
− · · ·

which evalutates
tan−1 1 =

π

4
= 1− 1

3
+

1

5
− · · ·

However, this converges non-exponentially, which may be slow. But

tan−1 1

2
= 1−

(
1
2

)3
3

+

(
1
2

)5
5

− · · · tan−1 1

3
= 1−

(
1
3

)3
3

+

(
1
3

)5
5

− · · ·

converges faster. Noting that

π

4
= tan−1 1

2
+ tan−1 1

3
,

we can calculate π much faster (this can be proved by complex nubmers). The
Machin formula was found in the 18th century:

π

4
= 4 tan−1 1

5
− tan−1 1

239
,

which John Machin used in 1706 to find 100 digits, and Zacharias Dase in 1844
found 200 digits, and William Shanks in 1876 found 707 digits, but everything
from 528 onward was incorrect.
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§A.3 Limitations of power series
Taylor’s theorem says

f(x) =
∞∑
k=0

(
f (k)(x0)

)
(x− x0)

k

k!
,

which allows us to generate power series. However, it has limitations. Consider

f(x) =

{
0 x ≤ 0,

e
−1

x2 x > 0.

f (n)(x) =

{
0 x ≤ 0,

p( 1x)e
−1

x2 x > 0.

For some polynomial p(x). The function is infinitely differentiable, but f (n)(0) = 0
for all n, so a Taylor polynomial won’t give a proper approximation.

§A.4 Analysis bingo
W
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