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1. Uniform convergence and series

1.1. Definitions and tests for uniform convergence
January 25, 2023 Definition 1.1 (Uniform convergence of functions)

Given a sequence of functions (fn)n∈N, fn : X → R or C (can be generalized to f :
X → Y , where Y is a metric space).I will be using F

in these notes to
denote R or C

(fn) is said to be uniformly convergent with limit
f if for every ε > 0, there is an N = N(ε) (dependent on ε) such that

|fn(x)− f(x)| < ε, for all n ≥ N(ε), x ∈ X.

Definition 1.2 (Alternative definition)
fn → f uniformly if supx∈X |fn(x)− f(x)| → 0 as n → ∞.

Remark 1.1. The key difference between uniform convergence and pointwise convergence
of a function is that N depends on ε and x. For example, consider fn : [0, 1] → R : x 7→ xn.
Suppose we compare it to f(x) ≡ 0. By Definition 1.2,

sup
x∈[0,1)

|fn(x)− f(x)| = sup
x∈[0,1)

xn = 1,

so we do not have uniform convergence, but fn → f pointwise.

Definition 1.3 (Uniform convergence for function series)
The series

∑∞
k=1 fk(x) converges uniformly if the partial sums sn(x) :=

∑n
k=1 fk(x)

converge uniformly.

Definition 1.4 (Uniformly Cauchy)
fn is uniformly Cauchy if for every ε, there exists N = N(ε) s.t.

m,n > N =⇒ |fm(x)− fn(x)| < ε, x ∈ X.

Theorem 1.2 (Uniformly Cauchy implies uniformly convergent)
Any real-valued sequence which is uniformly Cauchy is uniformly convergent.

Proof. Note that if fn is uniformly Cauchy, then the sequence of numbers fn(x) is
Cauchy for all x ∈ X. Thus, for every x, limn→∞ fn(x) exists. Call it f(x). There
exists N = N

(
ε
2

)
s.t.

|fm(x)− fn(x)| <
ε

2
, for m,n > N

(ε
2

)
, x ∈ X

Then
lim
n→∞

s |fm(x)− fn(x)| = |fm(x)− f(x)| ≤ ε

2
< ε.

The Cauchy criterion can check for convergence without having to calculate the limit. Due
to this useful property, we generalize it for uniform convergence as well.
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Example 1.3 – We can show
∞∑

k=1

sin kx

k2 + |cos kx|

is uniformly convergent on R by Theorem 1.2. Consider the difference of partial sums where
m < n

|sn(x)− sm(x)| =

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣
≤

n∑
k=m+1

|fk(x)|

≤
n∑

k=m+1

1

k2

To bound this sum, we may take several approaches:
1. Note that

1

k2
≤ 1

k(k − 1)
=

1

k − 1
− 1

k
.

Thus,
n∑

k=m+1

1

k2
≤

n∑
k=m+1

1

k(k − 1)
=

1

m
− 1

n
→ 0.

This is an example of the comparison test.
2. Since

n∑
k=m+1

1

k2
≤

n∑
k=m+1

∫ k

k−1

1

x2
dx

=

∫ n

m

1

x2
dx.

We compute ∫ n

m

1

x2
dx =

1

m
− 1

n
→ 0.

This is the integral test.
3. We can set an upper/lower bound by considering “chunks” of length 2n:

1

4
· 2−` ≤

2`+1∑
k=2`+1

1

k2
≤ 2−`.

This is a dyadic decomposition.

January 27, 2023
Proposition 1.4 (Weierstrass M -test)
You can prove uniform convergence by the following test. If there exists a nonnega-
tive sequence (ak)k∈N ≥ 0 such that

∑∞
k=1 ak converges, and a sequence of functions

fk : X → F such that |fk(x)| ≤ ak, then
∑∞

k=1 fk(x) converges uniformly on X.

4
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Proof. Let ε > 0 be arbitrary. Let N(ε) = N < m < n and sn(x) =
∑n

k=1 fk(x). Then

|sn(x)− sm(x)| =

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣
≤

n∑
k=m+1

|fk(x)|

≤
n∑

k=m+1

ak.

Since
∑

k ak converges, it is Cauchy, and we can find N such that the sum is less than
ε.

Example 1.5 – DoesThis uses the
underlying fact
that if (bn) is a

sequence s.t.
limn→∞ b2n
exists, and

limn→∞ b2n+1 −
b2n = 0, then
limn→∞ bn =
limn→∞ b2n.

∞∑
k=1

(−1)k

k
xk

converge uniformly? Proposition 1.4 fails here since
∑

n
1
n

diverges.
Let k = 2`−1 for ` ∈ N. How big is |f2`−1(x)− f2`(x)| = x2`−1

2`−1
− x2`

2`
=: g`(x)? We take g′`(x):

g′`(x) = x2`−2 − x2`−1 = x2`−2(1− x).

The maximum is attained at x = 1, so

|f2`−1(x)− f2`(x)| ≤
1

2`− 1
− 1

2`
=

1

(2`− 1)(2`)
= O(`−2).

With this comparison, we can show s2n(x) is Cauchy. Moreover, s2n+1 − s2n = (−1)2n+1

2n+1
→ 0

as n → ∞. Since odd and even are both Cauchy, the entire series is Cauchy, and Theorem 1.2
finishes.

Remark 1.6 (Review of integration by parts).January 30, 2023 Is

an =

∫ n

1

sin t√
t
dt.

Cauchy? The integral
∫ n

1
1√
t
dt does not converge as n → ∞, so we have to use a different

method. Consider an − am s.t. m < n. Then

an − am =

∫ n

m

sin t√
t
dt.

By integration by parts with u(t) = − cos t, v(t) = 1/
√
t:∫ n

m

sin t√
t
dt = −cosn√

n
+

cosm√
m

−
∫ n

m

sin t

(
−1

2

)
t−3/2 dt.

Now we bound the new integral by∣∣∣∣∫ n

m

sin t

(
−1

2

)
t−3/2 dt

∣∣∣∣ ≤ ∫ n

m

t−3/2 dt ≤ 2√
m
.

1.2. Applications of uniform convergence

5
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Theorem 1.7
Let fn : X → F, where X is a metric space. Assume

1. fn converges uniformly on X to f ,

2. fn is continuous at a ∈ X.

Then f is also continuous at a.

Proof. We can compare

|f(x)− fN (x) + fN (x)− fN (a) + fN (a)− f(a)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (a)|
+ |fN (a)− f(a)|

The first and last terms can be bounded by ε
3 by uniform convergence. Since fn is

continuous at a, ∃δ s.t. |fN (x)− fN (a)| < ε
3 for all x s.t. d(x, a) < δ.

Theorem 1.8
Suppose that f : [a, b] → F are continuous functions and fn → f uniformly on [a, b].
Then ∫ b

a

fn(x) dx →
∫ b

a

f(x) dx, n → ∞

Proof. We have ∣∣∣∣∣
∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

fn(x)− f(x) dx

∣∣∣∣∣
≤
∫ b

a

|fn(x)− f(x)| dx.

Mn = supx∈[a,b] |fn(x)− f(x)| → 0 since fn → f uniformly. Thus, we can bound the
integral ∫ b

a

Mn dx ≤ Mn(b− a).

Theorem 1.9
Suppose that fn : [a, b] → R is a sequence of functions such that fn is differentiable
and f ′

n is continuous for all n. Assume that f ′
n → g uniformly on [a, b] and there

exists x0 s.t. fn(x0) converges. Then fn → f uniformly, where the limit function is
differentiable and f ′ = g.

Proof sketch. Use

fn(x) = fn(x0) +

∫ x

x0

f ′
n(t) dt → c+

∫ x

x0

g(t) dt.

The limit has derivative g(x) by the fundamental theorem of calculus.

6
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1.3. Taylor’s theorem
February 1, 2023 Definition 1.5 (Ck function)

A function f is of class Ck if f, f ′, . . . , f (k) are continuous on a given interval.

The simplest form of Taylor’s theorem is as follows: On some interval I we consider a
C1-function and a ∈ I. Then

f(a+ h) = f(a) +

∫ a+h

a

f ′(t) dt

= f(a) + h

∫ 1

0

f ′(a+ sh) ds.

This change is made by substituting t = a+ sh. We can now say

min
0≤s≤1

f ′(a+ sh) ≤ f ′(a+ sh) ≤ max
0≤s≤1

f ′(a+ sh),

min
0≤s≤1

f ′(a+ sh) ≤
∫ 1

0

f ′(a+ sh) ds ≤ max
0≤s≤1

f ′(a+ sh).

Applying the IVT to the function s 7→ f ′(a+ sh) tells us that∫ 1

0

f ′(a+ sh) ds = f ′(ξ),

where ξ is between a and a+ h, or ξ = a+ s∗h such that s∗ ∈ [0, 1]. Thus,

f(a+ h) = f(a) + f ′(ξ)h︸ ︷︷ ︸
remainder

.

By rearranging, we find that it is just the mean value theorem. Now suppose we try and
extend it. Let f ∈ C2 on I. Use integration by parts with u(s) = 1−s and v(s) = f ′(a+sh):∫ 1

0

f ′(a+ sh) ds = −
∫ 1

0

d

ds
(1− s)f ′(a+ sh) ds = f ′(a) +

∫ 1

0

(1− s)f ′′(a+ sh)h ds.

Thus,

f(a+ h) = f(a) + f ′(a)h+ h2

∫ 1

0

(1− s)f ′′(a+ sh) ds.

The last integral is not quite an average, but if we rewrite toMotivated by the
fact that∫ 1

0

1− s ds =
1

2
.

h2

2

∫ 1

0

2(1− s)f ′′(a+ sh) ds =: E1(a, h).

We can bound
|E1(a, h)| ≤

h2

2
max |f ′′(a+ sh)| .

Then
f(a+ h) = f(a) + f ′(a) + f ′′(ξ)

h2

2
.

7
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Theorem 1.10 (Taylor’s/Maclaurin’s theorem)
Assume that f ∈ Ck+1 on I. Let a be in the interior of I. For a, a+ h ∈ I, we have the
identity

f(a+ h) =

k∑
j=0

hj

j!
f (j)(a) + Ekf(a, h), (1.1)

where the error term Ekf(a, h) is given by

Ekf(a, h) =
hk+1

(k + 1)!

∫ 1

0

(k + 1)(1− s)kf (k+1)(a+ sh) ds.

We may also write, as before,

Ekf(a, h) =
hk+1

(k + 1)!
f (k+1)(ξ), ξ between a and a+ h.

Proof. We induct on k. Assume it holds for some k ∈ {0, 1, 2, . . .} and that f ∈ Ck+2.
Then we use integration by parts by noting 0− d

ds (1− s)k+1 = (k + 1)(1− s)k.∫ 1

0

(k + 1)(1− s)kf (k+1)(a+ sh) ds = −(1− s)k+1f (k+1)(a+ sh)
∣∣∣1
s=0

+

∫ 1

0

(1− s)k+1f (k+2)(a+ sh)h ds

= f (k+1)(a) +

∫ 1

0

(1− s)k+1f (k+2)(a+ sh)h ds

Thus

f(a+ h) =

k∑
j=0

hj

j!
f (j)(a) +

f (k+1)(a)

(k + 1)!
hk+1 + Ek+1(a, h),

where

Ek+1(a, h) =
hk+1+1

(k + 1)!(k + 2)

∫ 1

0

(1− s)k+1(k + 2)f (k+2)(a+ sh) ds.

Since ∫ 1

0

(1− s)k+1(k + 2) ds = 1,

this is a “weighted average” and

Ek+1(a, h) =
hk+1+1

(k + 1)!(k + 2)

∫ 1

0

(1− s)k+1(k + 2)f (k+2)(a+ sh) ds =
hk+2

(k + 2)!
f (k+2)(ξ).

1.3.1. Applications of Taylor’s formula

8



Analysis II Notes 1.3 Taylor’s theorem Pramana

Example 1.11 (Recentering polynomials) –February 3, 2023 Let P =
∑n

j=0 cjx
j be a polynomial of degree n.

Suppose we wanted to write P in the form

P (x) =

n∑
j=0

bj(x− a)j .

A long-winded way to solve this would be to write xj = ((x − a) + a)j and expand with the
binomial theorem, but this takes a very long time.

Instead, by Theorem 1.10,

P (x) =

n∑
k=0

P (k)(a)

k!
(x− a)k.

Where the error term is 0.

Example 1.12 (Exponential function) – Consider f(x) = ex ∈ C∞, which is the unique func-
tion such that f ′(x) = f(x), f ′(0) = 1. To define e, we call it the unique number a that makes
the integral

∫ a

1
1
t
dt = 1. With this, we can define log(x) :=

∫ x

1
1
t
dt. Clearly, log : (0,∞) → R.

Then let
exp = log−1 : R → (0,∞).

There are two important properties of exp:

exp(x+ y) = exp(x) exp(y), exp′(x) = exp(x).

By Theorem 1.10,

exp(x) =

n∑
k=0

xk

k!
+

xn+1

(n+ 1)!
eξ, ξ between 0 and x.

For the remainder, let |x| ≤ b. Then∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ ≤ bn+1

(n+ 1)!

n→∞−−−−→ 0.

Thus, the remainder goes to 0 uniformly on [−b, b].
To show that e = limn→∞

(
1 + 1

n

)n, take log
(
1 + 1

n

)n
= log(1+1/n)

1/n
. Then taking

lim
x→0

log(1 + x)− log 1

x
= log′(1) = 1.

Proposition 1.13
e is not a rational number.

Proof. We know
e =

n∑
k=0

1

k!
+

eξ

(k + 1)!

9
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is true for all n. Suppose that e is rational. Then Let e = p
q , q ≥ 4. Then

e =

q∑
k=0

1

k!
+

eξ

(q + 1)!

p

q
q!︸︷︷︸

∈N

= q!

(
q∑

k=0

1

k!
+

eξ

(q + 1)!

)

=

q∑
k=0

q!

k!︸︷︷︸
∈N

+
1

q + 1
eξ︸ ︷︷ ︸

<1,>0

.

We cannot write an integer as the sum of an integer and a number between 0 and 1.
Contradiction.

Remark 1.14. To extend ex to the complex numbers, we can write

ez =

∞∑
n=0

zn

n!
, z ∈ C.

We can extend cos and sin similarly. If z = ib is a pure imaginary number, then

ez =
∞∑

n=0

(ib)n

n!
=

(
1− b2

2!
+ · · ·

)
+ i

(
b− b3

3!
+ · · ·

)
= cos b+ i sin b.

1.4. Power series
February 6, 2023 Definition 1.6 (Power series)

Power series are series of the form
∞∑

n=0

anz
n, z ∈ C.

Remark 1.15. In the complex numbers, we can write a number in terms of polar coordi-
nates:

z1 = r(cosα+ i sinα), z2 = R(cosβ + i sinβ).

We then have the rule
z1z2 = rR(cos(α+ β) + i sin(α+ β)).

Therefore, if z = reiα (which is the same as before), then

zn = rnei(nα).

Power series results in this section generalize to complex numbers as well.

Theorem 1.16 (Radius of convergence)
There exists a unique R ∈ [0,∞] s.t.

∑∞
n=0 anz

n converges for all z with |z| < R. The
series is divergent for all z with |z| > R.It is a harder

question for
whether it con-
verges/diverges

for |z| = R

R can be computed:

R =
1

lim supn→∞ |an|
1
n

.

10
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Proof. Let R be defined as above. To show divergence for |z| > R, there is an ε > 0

s.t. |z| > R(1 + ε) =⇒ |z|
R > 1 + ε. Thus,

lim sup
n→∞

|an|
1
n |z| > 1 + ε.

Recalling the definition of lim sup, there is a subsequence akn s.t. |akn |
1/kn |z| ≥ 1 + ε

for all n ∈ N. Thus,
|akn

| |z|kn ≥ (1 + ε)kn → ∞.

So
∑∞

n=0 anz
n diverges.

To show convergence for |z| < R,

lim sup
n→∞

|an|
1
n · |z| < 1− ε.

Thus, there is an N s.t. n > N =⇒ |an|
1
n |z| < 1− ε

2 . So

|an| |zn| <
(
1− ε

2

)n
.

Use a comparison to a geometric series to show that it converges.

Remark 1.17. For the series
∑

n an(z − z0)
n, we can just shift the function by z − z0 7→ w

and apply the previous theorems.

Remark 1.18. The above proof gives uniform convergence for |z| ≤ r where r < R.

1.4.1. Computing sums with power series

February 8, 2023 Consider the two identities

1− 1

2
+

1

3
− 1

4
+ · · · = log 2, (1.2)

1− 1

3
+

1

5
− 1

7
+ · · · = π

4
. (1.3)

To get the sum
∑

n an, consider the power series
∑

n anx
n evaluated at x = 1.

To find Equation 1.3, consider the power series
∞∑
k=0

(−1)k
x2k+1

2k + 1
=

∞∑
k=0

(−1)k
∫ x

0

t2k dt

=

∫ x

0

∞∑
k=0

(−1)kt2k dt

=

∫ x

0

∞∑
k=0

(−t2)k dt

=

∫ x

0

1

1 + t2
dt

= arctanx.

Letting x = 1, arctan 1 = π
4 . Note that we did not justify the steps in this calculation. In

particular switching the integral and the sum was done without justification.

11
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Theorem 1.19
Given [a, b] such that fn : [a, b] → F (fn continuous) such that the series

∞∑
n=0

fn(x)

converges uniformly on [a, b]. Then the sum is a continuous function s(t), and for
x0, x ∈ [a, b], ∫ x

x0

s(t) dt =

∫ x

x0

∞∑
n=0

fn(t) dt =

∞∑
n=0

∫ x

x0

fn(t) dt

Apply the analogous theorem for sequences of functions to the partial sums of the series
to prove the above theorem.

Consider
s(x) =

∞∑
k=0

(−1)k
x2k+1

2k + 1

If this series converges uniformly on [−1, 1], then the sum is a continuous function.
In our case, to show that the series converges uniformly on [−1, 1], we use a previous

trick by bounding
∣∣∣x2k+1

2k+1 − x2k+3

2k+3

∣∣∣ = O(k−2). Then uniform convergence is shown.

s(x) = arctanx, −1 < x < 1,

and continuous on [−1, 1]. So

s(1) = lim
x→1−

s(x) = lim
x→1−

arctanx =
π

4
.

For Equation 1.2, consider −
∑∞

n=1
xn

n at x = −1.

1.4.2. Differentiation of power series

Consider
∑∞

n=0 anx
n with radius of convergence R > 0. We already proved that the sum

converges uniformly on [−r, r] for r < R. We already know we can differentiate the power
series term-by-term.

Theorem 1.20 (Differentiating a power seriess)
Let f(x) =

∑∞
n=0 anx

n. Then f is differentiable and

f ′(x) =

∞∑
n=1

annx
n−1

Proof. We need to show that the radius of convergence is the same (so any smaller
radius has uniform convergence). Let

R =
1

lim sup |an|
1
n

Let |x| < R(1− ε) =⇒ |x|
R < 1− ε. Then

|an|1/n |x| ≤ (1− ε) =⇒ |an| |x|n ≤ (1− ε)n.

12
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For the derivative,

(n+ 1)1/(n+1) |an|1/(n+1) |x| ≤ (1− ε).

For large n,
|an+1| |x|n ≤ (1− ε)n+1

|x|
.

So this power series converges as well.

In fact, all formally differentiated series satisfy

f (k)(x) =

∞∑
n=k

anx
n−kn(n− 1) · · · (n− k + 1).

Thus, the kth derivative exists and is continuous for all k.

Corollary 1.21
A (convergent) power series is its own Taylor series.

Corollary 1.22
If
∑∞

k=0 akx
k =

∑∞
k=0 bkx

k on (−R,R), then ak = bk for all k.

1.4.3. Abel’s theorem

February 10,
2023

Look at power series
∑∞

k=0 akx
k. To evaluate at 1, we may consider

lim
r→1

∞∑
k=0

akr
k.

If
∑

n anr
n converges uniformly for r ∈ [0, 1], then we will show that the limit agrees with

the actual sum.

Theorem 1.23 (Abel’s theorem)
If
∑∞

k=0 akr
n converges at r = 1, then

∞∑
k=0

ak = lim
r→1−

∞∑
k=0

akr
k.

Proof. Write the partial sums as sn :=
∑n

k=0 ak. We may write an = sn − sn−1 and
a0 = s0. By assumption, s = limn→∞ sn. Using the above notation, we can write ak in

13
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terms of the partial sums:
∞∑
k=0

akr
k = s0 +

∞∑
k=1

(sk − sk−1)r
k

= s0 + (s1 − s0)r + (s2 − s1)r
2 + · · ·

= s0(1− r) + s1(r − r2) + s2(r
2 − r3) + · · ·

= (1− r)

( ∞∑
k=0

snr
n

)

= (1− r)

( ∞∑
k=1

(sn − s)rn

)
+ (1− r)

( ∞∑
k=1

srn

)
.

The second term is just s, so we will show the first term goes to 0.
Fix ε > 0. We find N(ε) s.t. |sn − s| < ε

C for all n > N . For all r ∈ [0, 1),∣∣∣∣∣(1− r)

( ∞∑
k=N

(sn − s)rk

)∣∣∣∣∣ ≤
∞∑

k=N

ε

C
rk(1− r)

<
ε

C
.

For the rest of the sum, consider what happens as r → 1:

(1− r)︸ ︷︷ ︸
→0

N−1∑
n=0

(sn − s)rn︸ ︷︷ ︸
finite

.

So there is an r0 < 1 s.t. ∣∣∣∣∣(1− r)

N−1∑
n=0

(sn − s)rn

∣∣∣∣∣ < ε

2

for r0 < r < 1. Combining these two sums and letting C = 3,∣∣∣∣∣(1− r)

( ∞∑
k=1

(sn − s)rn

)∣∣∣∣∣ < ε.

1.4.4. Abel summation

In the first part of Theorem 1.23, we used a summation technique worth noting. Abel
summation is also known as summation by parts because of its similarities to integration
by parts.

Theorem 1.24 (Summation by parts)
Given (an) and (bn), let An :=

∑n
k=0 ak. Then for p < q,

q∑
n=p

anbn = Aqbq −Ap−1bp +

q∑
n=p

An(bn − bn+1).

In the case p = 0, define A−1 = 0.

14
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Proof.
q∑

n=p

anbn =

q∑
n=p

(An −An−1)bn

=

q∑
n=p

Anbn −
q∑

n=p

An−1bn

=

q∑
n=p

Anbn −
q−1∑

n=p−1

Anbn+1

= Aqbq +

q−1∑
n=p

An(bn − bn−1)−Ap−1bp.

Example 1.25 (Application of Abel summations) – For what values of α does
∑∞

k=1
sin kx
ka

converge? Similarly, does
∑∞

k=1
cos kx
ka converge? We first note

• There are good bounds for
∑N

k=1 sin kx.We may create
bounds by

considering
sin x

2

∑N
k=1 sin kx,

and finding
cancellation.

However, this is
not intuitive, so
we won’t use it.

Write

N∑
k=1

sin kx = Im

(
N∑

k=0

eikx
)

= Im

(
N∑

k=0

zk
)∣∣∣

z=eix

= Im

(
1− zN+1

1− z

)
≤ Im

(∣∣1− zn+1
∣∣

|1− z|

)

≤ 2

|1− z| .

z = 1 ⇐⇒ cosx = 1, sinx = 0 only when x is an integer multiple of 2π. These values
will not work.

•

|bk − bk+1| =
∣∣∣∣ 1

(k + 1)a
− 1

ka

∣∣∣∣
=

∣∣∣∣ka − (k + 1)a

ka(k + 1)a

∣∣∣∣ .
To bound this, let f(x) = xa. Then f(k + 1)− f(k) = f ′(ξ) such that ξ is between k and
k + 1. Then f ′(ξ) is between aka−1 and a(k + 1)a−1. Thus,

|bk − bk+1| ≤ C
ka−1

k2a

≤ Ck−a−1

bk → 0 as k → ∞. |Aq − bq| and |Ap−1bq| both go to 0 as p and q → ∞. We can show convergence
by using Abel sums.

Remark 1.26.February 13,
2023

In the homework, we showed that

lim
n→∞

n∑
k=1

1

k
− log n

15
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converges. The value that it converges to is called γ, the Euler-Mascheroni constant.

Problem 1.1 (Open problem)
Is γ irrational?

16
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2. Metric spaces

2.1. Norms
If we have a norm, we induce a metric: d(x, y) = ‖x− y‖. However, mectrics do not induce
norms, because norms are only defined on vector spaces, and there are plenty of metric
spaces that are not vector spaces.

Example 2.1 (Infinite-dimensional normed spaces) – Metrics behave differently in infinite-
dimensional spaces:

• Function metric spaces: If X is a set, we let BR(x) be the set of bounded real-valued
functions. Define a norm ‖f‖ := supx∈X |f(x)|. This norm induces the metric defined
as d(f, g) = supx∈X |f(x)− g(x)|.

• `k(N) spaces: The space `1 (of N) is the set of functions on N a.k.a. sequences such that∑∞
n=1 |an| converges. `∞(N) is the set of series (an) such that supn∈N |an| is finite.

2.2. Compactness
2.2.1. Balls

February 15,
2023

Given a metric space (X, d), and Y ⊆ X, Y is a metric space with the metric d|Y×Y .

Definition 2.1 (Open ball)
The open ball in X, centered at y ∈ X is denoted

BX(y, r) = {x ∈ X | d(x, y) < r} .

We note that with X and Y defined as before, BY (y, r) = BX(y, r) ∩ Y .

Theorem 2.2 (Condition for open set of (Y, d|Y×Y ) ⊂ (X, d))
Let Y ⊆ X, with the metric inherited from X. Then U ⊆ Y is open in Y ⇐⇒ there
is an open set (w.r.t. dX metric) O ⊆ X such that O ∩ Y = U .

Proof. ( ⇐= ) Let O be open in X. Let w ∈ O ∩ Y . Since w is an interior point of O,
there is BX(w, rw) ⊆ O. Thus,

BX(w, rw) ∩ Y︸ ︷︷ ︸
BY (w,rw)

⊂ O ∩ Y.

So w is an interior point of O ∩ Y (w.r.t. Y ’s metric).
( =⇒ ) Assume that U is open in Y , so w is an interior point of U (w.r.t. Y ’s metric),

and BY (w, rw) ⊆ U .We note⋃
w∈U BY (w, rw) =

U .

We define

O :=
⋃
w∈U

BX(w, rw),

which is an open set in X. To show this satisfies the conditions, we note

O ∩ Y =
⋃
w∈U

(BX(w, rw) ∩ Y ) =
⋃
w∈U

BY (w, rw) = U.

17



Analysis II Notes 2.2 Compactness Pramana

2.2.2. Notions of compactness

Definition
We may examine compactness in different contexts:

Definition 2.2 (Compact metric space)
A metric space (X, d) is compact if the following holds: whenever X can be
written as the union of open sets:

⋃
α∈A Ox there is a finite number of indices

α1, . . . , αn whose corresponding Os union to X.

Definition 2.3 (Compact subset)
Given a metric space X and K ⊆ X, K is compact if every cover of K with open
sets has a finite subcover.

These definitions are compatible with each other. This means that a compact subset K is
a compact metric space with K as the metric. Thus, the context of X does not matter. We
can prove this by using Theorem 2.2.
Remark 2.3 (Heine-Borel in Rn does not hold in all spaces). The Heine-Borel theorem
requires that the set be bounded and closed. In a normed space, a set Y is bounded if
‖y‖ ≤ C for all y ∈ Y . This is not “topologially invariant”, so we may have issues past Rn.
Consider X = `∞(N), where ‖f‖∞ := sup |f(n)|. Define

ek(n) :=

{
1 if k = n,

0 if k 6= n.

Note that
d(ek, e`) =

∥∥ek − e`
∥∥
∞ = 1

for all k, `. Let Y be the set of sequences ek for all k ∈ N. Consider all balls B(ek, 4−1).
Any intersection is empty. Y is not compact because removing any ball does not cover X.
However, the set is bounded by 1, and is closed because all points are isolated.

2.2.3. Three useful classifications of compactness

February 17,
2023

Definition 2.4 (Sequentially compact)
A metric space X is sequentially compact or has the Bolzano-Weierstrass property if
every sequence in X has a convergent subsequence.

For notation, let
(an) ⊆ (bn) mean

(an) is a
subsequence of

(bn).

Does there exist a sequence (dn) which is a subsequence of (a
(0)
n ) and for all but the

first ` entries are part of (a(`)n ) (for (a
(0)
n ) ⊇ (a

(1)
n ) ⊇ (a

(2)
n ) ⊇ (a

(3)
n ) ⊇ · · ·)? Yes, by letting

dn = a
(n)
n . This is called the Cantor diagonal subsequence. We will use this idea in the

proof of Theorem 2.4

Definition 2.5 (Totally bounded)
A metric space X is totally bounded if for every ε > 0, X is a union of finitely many
balls of radius ε.

Totally bounded is a stronger condition than bounded.

18
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Theorem 2.4 (Equivalence of notions of compactness)
The following are equivalent for a given metric space X:

1. X is compact.

2. X is sequentially compact.

3. X is totally bounded and complete.A metric space is
complete if every
Cauchy sequence

converges. Proof. (1) =⇒ (2). Suppose X compact and there is a sequence (an) in X which does
not have a convergent subsequence. Note that (an) does not have a term that repeats
an infinite amount of times.

Consider A, the set of an’s that are distinct. A does not have any accumulation
points (limit points), and therefore A is closed. Thus, for every xα ∈ A, there exists
ε(xα) = ε > 0 s.t.

B(xα, ε) ∩A = {xα} .

Moreover, X \ A is open. Consider the collection of open sets, X \ A (unless X is A),
and all the B(xα, ε)’s. This is an open cover, but we cannot remove any of them, so
there is no finite subcover.

(2) =⇒ (3). Let (xn) be Cauchy. By the definition of sequentially compact, it has a
convergent subsequence, so it is convergent.Exercise. Show

that a Cauchy
sequence with a

convergent
subsequence is

convergent.

Thus, X is complete.
Suppose that X is not totally bounded, then there exists an ε > 0 s.t. X is not

a finite union of ε-balls. Pick a ball B(p1, ε), and there is p2 so that d(p1, p2) ≥ ε.
Repeat this construction until we have p1, . . . , p` so that d(pi, pj) ≥ ε if i 6= j. The
ε-balls at these points do not cover X, so there is p`+1 that has the same properties.
The sequence (pn) has no subsequence that is Cauchy, so it fails to be sequentially
compact.

(3) =⇒ (2). Assume that X is totally bounded. We will prove that every sequence
that has a convergence subsequence which is Cauchy.

Let (xn) be an arbitrary sequence. Cover X with finitely many 1-balls. At least one
of B1 contains xn for infinitely many n. Thus, there is a subsequence (x

(1)
n ) so that all

values lie in B1.
There is a subsequence (x

(2)
n ) ⊆ (x

(1)
n ) which belongs to a ball B1/2.

In general, for all `, there is a subsequence (x
(`+1)
n ) ⊆ (x

(`)
n ), which belongs to B`,

and B`∩B`−1 6= ∅. Choose the diagonal sequence, dn := x
(n)
n is a subsequence of (xn).

For n,m > `,
d(dn, dm) ≤ 2−`+1.

(2), (3) =⇒ (1). Assume that X is sequentially compact (equivalently totally
bounded and complete) then every collection (Oα)α∈A with open sets has a finite sub-
cover.
Claim 2.1. There exists an ε > 0 s.t. all balls of radius ε are contained in at least
one of the Oα.
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Proof. Suppose the claim is false. Then for all εn = 1
2n , we find a ball B(pn,

1
2n )

which is not contained in any of the Oα’s. But (pn), by assumption, has a conver-
gent subsequence. Let that be pκ(n), and suppose pκ(n) → p. There is an index
α0 so that p ∈ Oα0 . Thus, p is an interior point of p ∈ Oα0 .

There is an εj such that
B(p, εj) ⊆ Oα.

Choose a suitably large n such that

d(pκ(n), p) <
εj
2
,

1

2κ(n)
<

εj
2
.

For every y ∈ B(pκ(n),
1

2κ(n) ) has d(y, p) < ε. But the nB(pκ(n),
1

2κ(n) ) are con-
tained in Oα for the large n. �

Since X is totally bounded, we can find a finite cover B(p1, ε), . . . , B(pN , ε) that are
contained in finitely many Oα, showing compactness.

2.3. Office hour tangent: O notation and similar
February 20,

2023
Definition 2.6 (O notation)
Given the sequences (an) and (bn), we write

• an = O(bn) if there exists a C > 0 such that |an| ≤ C |bn|,

• an = o(bn) if an

bn
→ 0 as n → ∞,

• an ∼ bn if an

bn
→ L for some L ∈ R as n → ∞.

2.4. Results from compactness
February 22,

2023
Theorem 2.5 (Properties of continuous functions on compact metric spaces)
Let X be a compact metric space and f : X → R be continuous. Then

1. f is bounded,

2. f attains its maximum and minimum,

3. f is uniformly continuous.For every ε > 0
there is a δ s.t.

|f(x)− f(y)| < ε
if f(x, y) < δ(ε) Proof. (1) By continuity, for every x ∈ X, there is a ball B(x, εx) s.t. for all w in the

ball, |f(w)− f(x)| < 1. All the balls form an open cover, so we may choose a finite
subcover:

B(x1, εx1
), . . . , B(xN , εxN

).

Fix w ∈ X. w ∈ B(xi, εxi). Then

|f(w)| = |f(xi)|+ |f(w)− f(xi)|
≤ max

j
|f(xj)|+ 1.

(2) Consider a sequence (xn) s.t. f(xn) > sup f − 1
n . By sequential compactness,

there is a subsequence (xκ(n))which converges to x0. Since f is continuous, f(xκ(n)) →
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f(x0). Thus,

f(xκ(n)) ≥ sup f − 1

κ(n)

n→∞−−−−→ f(x0) ≥ sup f =⇒ f(x0) = sup f.

Use a similar argument for inf.
(3) Pick ε > 0. For every x ∈ X, there is a δx s.t. |f(w) − f(x)| < ε

2 if d(w, x) < δx.
The ballsB(x, δx/2) coverX. By compactness, we choose a finite subcoverB(xi, δxi

/2),
i = 1, . . . , N . Let δ := mini

δxi

2 . Pick w1, w2 such that d(w1, w2) < δ. Since this is a
covering, w1 ∈ B(xi, δxi

/2) for some i. One can show

w2 ∈ B(xi, δx/2 + δ) ⊆ B(xi, δx).

Looking at f ,

|f(w1)− f(w2)| ≤ |f(w1)− f(xi)|+ |f(xi)− f(w2)|
< ε.

We will now greatly simplify the proof of the Heine-Borel theorem using the equivalent
notions of compactness.

Theorem 2.6 (Heine-Borel theorem)
If E ⊆ Rn is bounded and closed, then it is compact.

Proof. Since Rn is complete, E (a closed subset) is as well. E bounded means E ⊆
[−R,R]n. Choose a < ε

2
√
n

. Consider the balls centered at

(k1a, . . . , kna), |kia| < R+ 1, ki ∈ Z.

February 24,
2023 Example 2.7 (Examples of compactness where Heine-Borel does not apply) – Let c0 be the

vector space of real-valued sequences that converge to 0. Let a := (an)
∞
n=1. Let

‖a‖∞ = sup
n∈N

|an| .

If
∥∥∥a(n) − a

∥∥∥
∞

→ 0. This gives a notion of uniform convergence (if we think of sequences as
functions from N → R). Given ε > 0, find an N = N(ε) such that∣∣∣aj − a

(n)
j

∣∣∣ ≤ ε

2
, ∀j, n ≥ N.

Similarly, we already know |a(n)
j | < ε

2
for suitably large n.

|aj | ≤ |a(n)
j |+ |aj − a

(n)
j |

< ε

Thus c0 is a closed subspace of `∞.

Lemma
A subset K of c0 is totally bounded if (and only if) limj→∞ ‖(an)‖ = 0.

21



Analysis II Notes 2.4 Results from compactness Pramana

Definition 2.7 (Relatively compact)
A metric space X is relatively compact if the closure of X is compact.

Proposition 2.8
A subset U ⊆ X of a complete metric space that is totally bounded is relatively com-
pact.

The proof of the above statement follows from Theorem 2.4, since closed subsets of complete
metric spaces are also complete, and the closure of a totally bounded set is totally bounded
as well.February 27,

2023

Lemma 2.9
Suppose A ⊆ X and for every ε > 0, there is a finite number of balls

B(ξ, ε), ξ ∈ X ⊆ X, |X | < ∞

such that
A ⊆

⋃
ξ∈X

B(ξ, ε).

Then A is totally bounded.

Remark 2.10. The difference between this and the definition of totally bounded is that
the ξ’s may belong to X, which may be a larger space than A . This lemma tells us that it
doesn’t matter if we consider centers in the larger metric space.

2.4.1. Application: Characterizing totally bounded function classes

Definition 2.8 (Pointwise and uniformly bounded)
A class A of functions defined on X is pointwise bounded if for every x there is an
Mx < ∞ such that

sup
f∈A

|f(x)| ≤ Mx.

A is uniformly bounded if

sup
x∈X

sup
f∈A

|f(x)| ≤ M < ∞.

Definition 2.9
A class A ⊆ C(K) is equicontinuous if for every ε > 0, there exists δ s.t. d(x, y) < δ
implies |f(x)− f(y)| < ε for all f ∈ A .
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Theorem 2.11 (Arzelà-Ascoli)
Consider C(K) on a compact set K equipped with the sup norm:

‖f‖∞ := sup
x∈K

|f(x)|.

A ⊆ C(K) is totally bounded if and only if it is pointwise boundedIf A ⊆ C(K) is
equicontinuous,

then A is
pointwise

bounded ⇐⇒ it
is uniformly

bounded.

and equicontinu-
ous.

Proof. ( =⇒ ) Let Ξ be a collection of N balls B(fj ,
ε
3 ), 1 ≤ j ≤ N . f1, . . . , fN are

continuous on K, a compact set. Thus, there is an M such that

sup
i=1,...,N

|fi(x)| ≤ M.

For arbitrary f ∈ A , there is an index i such that

‖f − fi‖∞ ≤ ε

3
.

Thus,
|f(x)| ≤ |fi(x)|+ |f(x)− fi(x)| ≤ M +

ε

3
.

This implies A is uniformly bounded.
For each i there is a δi s.t. d(x, y) < δi =⇒ |fi(x)− fi(y)| < ε

3 . Let δ = mini δi. We
can also find i such that

|f(t)− fi(t)| <
ε

3
, ∀t ∈ K,

by uniform continuity (continuity on a compact set). Thus,

|f(x)− f(y)| ≤ |f(x)− fi(x) + fi(x)− fi(y) + fi(y)− f(y)|
≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)|
< ε.

March 1, 2023 ( ⇐= ) Since K is compact and A is equicontinuous, choose a covering of δ-balls

B(x1, δ), . . . , B(xn, δ),

and f changes by less than ε
3 in any of these balls. Ideally, we want to define a set of

constant functions that give a covering, but overlaps may cause us to define a function
twice on a point. To prevent this, let

E1 = B(x1, δ), E2 = B(x2, δ) \B(x1, δ), . . . ,

Ej := B(xj , δ) \

(
j−1⋃
k=1

B(xk, δ)

)
.

Each Ej has diameter ≤ δ
2 . Let C be the set of functions which are (1) constant on

each Ei (2) takes values of the form k ε
3 , where

∣∣k ε
2

∣∣ ≤ M,k ∈ Z. These conditions
mean that C is finite.

To show this covers, consider f ∈ A . Consider f |Ei
. For any point x ∈ Ei has

distance δ to some xi. There is also some k ε
3 s.t.

∣∣f(xi)− k ε
3

∣∣ < ε
3 .
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2.5. Banach’s fixed point theorem
March 6, 2023 We begin with a motivating problem: Find x = (x1, x2) such that

10x1 + sin(x1 + 2x2) = 10000,

cos(x1 + x2) + 5x2 = 100.

Finding the solution to this would be hard, but showing that it has a solution may be
easier.

Definition 2.10 (Contraction)
If (X, d) is a metric space, and T : X → X is called a contraction if there exists an
α < 1 such that

d(T (x), T (y)) ≤ α · d(x, y)

Theorem 2.12 (Banach fixed point theorem)
If (X, d) is complete, then all contractions have a unique fixed point, which exists.

Proof. (Uniqueness) Suppose x, y ∈ X s.t. T (x) = x, T (y) = y. Then

d(x, y) = d(T (x), T (y)) ≤ α · d(x, y).

Thus, d(x, y) = 0.
(Existence) We use “the method of successive approximation”. We construct a se-

quence. x0 ∈ X. Define xn = T (xn−1). I claim this is Cauchy. We find

d(xn+1, xn) ≤ αn · d(x1, x0).

Let m > n. Then

d(xm, xn) ≤ d(xm, xm−1) + · · ·+ d(xn+1, xn)

≤ αn(1 + α+ · · ·+ αm−1−n) · d(x1, x0)

≤ αn

1− α
d(x1, x0).

This shows (xn) is Cauchy. Since X is complete, xn → x ∈ X. Also, xn+1 = T (xn) → x.
Thus, since T is continuous, T (xn) → T (x).
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Example 2.13 (Integral equation with a fixed point) – Find f ∈ C[0, 1] s.t.

f(x) =

∫ 1

0

K(x, t)f(t) dt+ g(x).

Assume that K ∈ C[0, 1]2 |K(x, t)| ≤ α < 1. We may define an operator T s.t.

Tf(x) :=

∫ 1

0

K(x, t)f(t) dt+ g(x).

Then

d(Tf1, T f2) = sup
x

|Tf1(x)− Tf2(x)|

≤
∫ 1

0

|K(x, t)| · |f1(t)− f2(t)| dt

≤ α · d(f1, f2).

2.6. Differential equations
2.6.1. Initial value problems

March 9, 2023 Give the system

y(x0) = y0

y′(x) = F (x, y(x))
(2.1)

For a function (x, y) 7→ F (x, y) which is continuous near x0, y0. This is an initial value
problem: can we find x 7→ y(x) near x0, such that y solves the above conditions? How many
solutions are there?

Example 2.14 (Multiple solutions example) – Consider

y′(x) =
√

|y(x)|, y(0) = 0

There are multiple solutions to this:
• y(x) ≡ 0.

• y(x) =

{
x2

4
x > 0,

0 x = 0.

Theorem 2.15 (Peano)
For an IVP of the form in Equation 2.1, if F is continuous near (x0, y0), then it has a
solution.

We will not prove this theorem right now.
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Theorem 2.16 (Picard-Lindelöf)
If in addition, for F continuous on

R := {(x, y) : |x− x0| ≤ a, |y − y0| ≤ b} ,

and
|F (x, y)− F (x, ỹ)| ≤ C|y − ỹ|,

such that
sup

x,y∈R
|F (x, y)| = M < ∞.

For x ∈ [x0 − δ, x0 + δ], such thatWe will prove
that δ has a

better bound
later. δ < min

{
a,

b

M
,
1

C

}
,

then the solution guaranteed by Theorem 2.15 is unique.

Lemma 2.17
For a continuous function x 7→ y(x) defined on [x0−δ, x0+δ]with values in [y0−b, y0+b],
the following two conditions are equivalent:

1. y is of class C1 on the interval, and satisfies our initial value problem.

2. y solves the integral eqation

y(x) = x0 +

∫ x

x0

F (t, y(t)) dt.

Proof. ( =⇒ )
y′(t) = F (t, y(t)), t ∈ [x0 − δ, x0 + δ].

Thus, ∫ x

x0

y′(t) dt =

∫ x

x0

F (t, y(t)) dt

y(x)− y(x0) =

∫ x

x0

F (t, y(t)) dt.

Use the substitution y(x0) = y0.
( ⇐= ) t 7→ (t, y(t)) is continuous. (t, y) 7→ F (t, y) is continuous. Thus, t 7→ F (t, y(t))

is continuous. By the fundamental theorem of calculus,

x 7→
∫ x

x0

F (t, y(t)) dt

is C1 and the derivative is F (x, y(x)). This yields the IVP form.

Proof of Picard-Lindelöf. Assume that F is defined and continuous on

R = {(x, y) : x0 − a ≤ x ≤ x0 + a, y0 − b ≤ y ≤ y0 + b} .
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We want to apply Theorem 2.12. We define the operator

Ty(x) := y0 +

∫ x

x0

F (t, y(t)) dt.

Thus, the integral equation is y = Ty. Our metric space will be the set of all contin-
uous functions on [x0 − δ, x0 + δ] which have values in [y0 − b, y0 + b].March 10, 2023 Let M be this
metric space, and equip it with the sup norm.
Claim 2.2. T : M → M.

Let y ∈ M. Consider

|Ty(x)− y0| =
∣∣∣∣∫ x

x0

F (t, y(t)) dt

∣∣∣∣
≤ M |x− x0|
≤ Mδ.

By requiring δ < b
M , we are done. �

Claim 2.3. M is complete.

Let
Mx := {f ∈ C[x0 − δ, x0 + δ] : |f(x)− y0| ≤ δ} .

Each of these sets are clearly closed. Since

M =
⋂

x∈[x0−δ,x0+δ]

Mx,

M is closed, and therefore it is complete. �

Claim 2.4. T is a contraction.

We will bound T to shown contraction.

d(Ty1, T y2) = sup
|x−x0|<δ

|Ty1(x)− Ty2(x)|

= sup
|x−x0|<δ

∣∣∣∣∫ x

x0

F (t, y1(t))− F (t, y2(t)) dt

∣∣∣∣
By the Lipschitz condition, we have

|F (t, y1(t))− F (t, y2(t))| ≤ C|y1(t)− y2(t)| ≤ Cd(y1, y2).

Thus,

d(Ty1, T y2) ≤ sup
|x−x0|<δ

Cd(y1, y2)

≤ Cδd(y1, y2).

If we assume that δ < 1
C , then this is a contraction.

Remark 2.18 (Small intervals where solution is guaranteed). Consider the IVP

y′(x) = R2 + y(x)2, y(0) = 0, (x, y) ∈ [−1, 1]× [−1, 1].

If we let R be large, then the interval will have to be less than 1
R2+1 .
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Let’s show where it actually works. We may rewrite this as

1 =
y′

R2 + y2
=

1

R

y/R

1 + (y/R)2
=

1

R

d

dx
arctan

y

R
.

We find that
arctan

y(x)

R
= Rx =⇒ y(x) = R tanRx.

This means that Rx < π
2 . Clearly, if R gets large, the solution interval can get arbitrarily

small.

Proposition 2.19
We can improve the bounds of δ in Theorem 2.16 to

δ < min

{
a,

b

M

}
.

Proof. Let’s choose a different metric. For a large constant L, let

dL(f, g) := sup
|x−x0|<δ

|f(x)− g(x)|e−L|x−x0|.

Claim 2.5. dL(Ty1, T y2) ≤ C
L dL(y1, y2).

dL(Ty1, T y2) = sup
|x−x0|<δ

|Ty1(x)− Ty2(x)|e−L|x−x0|

= e−L|x−x0| sup
|x−x0|<δ

∣∣∣∣∫ x

x0

F (t, y1(t))− F (t, y2(t)) dt

∣∣∣∣
≤ e−L|x−x0|

∫ x

x0

CdL(y1, y2)e
L|t−x0| dt

=
C

L
dL(y1, y2).

2.6.2. Successive approximation

March 20, 2023 The fixed point theorem tells us, given y(t0) = y0, we can create an interative solution to
an integral equation by letting

yn+1(t) = y0 +

∫ t

t0

F (s, yn(s)) ds.

Proposition 2.20
Let a∗ be the δ defined in Proposition 2.19. We can bound successive functions by

max
|t−t0|≤a∗

|yn(t)− yn−1(t)| ≤
MCn−1an∗

n!

28



Analysis II Notes 2.6 Differential equations Pramana

Proof. Assume that t ≥ t0.

|y1(t)− y0(t)| =
∣∣∣∣∫ t

t0

F (s, y0) ds

∣∣∣∣
≤ M |t− t0|

|y2(t)− y1(t)| =
∣∣∣∣∫ t

t0

F (s, y1(s))− F (s, y0(s)) ds

∣∣∣∣
≤
∫ t

t0

|F (s, y1(s))− F (s, y0(s))| ds

≤
∫ t

t0

C|y1(s)− y0(s)| ds

≤
∫ t

t0

CM |s− t0| ds

= CM
|t− t0|2

2
.

We can continue with the same method by induction to show the bound.

Proof of Peano’s theorem. “Near” in the theorem statement has a formal definition.
Let F be continuous on

R = [x0 − a, x0 + a]× [y0 − b, y0 + b].

Moreover, let M = maxR |F | and a∗ := min
{
a, b

M

}
.

Let
yn =

∫ t

t0

F (s, yn−1(s)) ds = T [yn−1].

I claim the set
{T [y] : y ∈ C[t0 − a∗, t0 + a∗]}

is compact. We use Arzela-Ascoli; we don’t work with the entire interval, but a similar
proof follows. Totally bounded is true. For equicontinuity, we need to use Euler’s
(polygonal) method: Given a partition P = t0 < t1 < · · · < tN = t0 + a∗. We may
approximate y by

yP(t) :=



y0 + F (t0, y0)(t− t0) t ∈ [t0, t1]

yP(t1) + F (t1, y(t1))(t− t1) t ∈ (t1, t2]
...

yP(tk) + F (tk, y(tk))(t− tk) t ∈ (tk, tk+1]
...

yP(tN−1) + F (tN−1, y(tN1
))(t− tN−1) t ∈ (tN−1, tN ]

March 22, 2023 We can show by induction that this is well-defined on [t0 − a∗, t0 + a∗]. We also have

|yP(t)− yP(t′)| ≤ M |t− t′|.

The set
{yP : P partition, |slope| ≤ M} ⊆ C[t0, t0 + a∗],
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satisfies Arzela-Ascoli, so it is compact. Thus, this has a convergent subsequence that
is convergent to some y ∈ C[t0, t0 + a∗].

Given ε > 0, there exists a δ(ε) such that

|t− t′|+ |x− x′| < 100δ =⇒ |F (t, y)− F (t′, y′)| < ε.

Let the maximum width of the partition be ≤ min
{
δ, δ

M

}
. Define step function

g(t) =
{
F (tk, yP(tk)) t ∈ [tk, tk+1] .

Then
yP(t) = y0 +

∫ t

t0

gP(s) ds.

We now bound∣∣∣∣yP(t)−
[
y0 +

∫ t

t0

F (s, yP(s)) ds

]∣∣∣∣ = ∣∣∣∣y0 + ∫ t

t0

gP(s) ds−
[
y0 +

∫ t

t0

F (s, yP(s)) ds

]∣∣∣∣
=

∣∣∣∣∫ t

t0

gP(s)− F (s, yP(s)) ds

∣∣∣∣
≤ (t− t0)ε ≤ a∗ε.
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3. Norms, operators, and derivatives

3.1. More norms
March 24, 2023 Given x = (x1, . . . , xn) ∈ Fn, the `p-norms are defined as

‖x‖p :=

(
n∑

i=1

|xi|p
) 1

p

, (3.1)

‖x‖∞ :=
n

max
x=1

|xi|. (3.2)

Lemma 3.1 (Generalized AM-GM)
If a, b ≥ 0 and θ ∈ (0, 1),

a1−θbθ ≤ (1− θ)a+ θb. (3.3)

Proof. This is true if a or b is 0, so assume a, b > 0. Diving by a on both sides we get(
b

a

)θ

≤ (1− θ) + θ
b

a
.

Instead, let’s show for x ≥ 0, f(x) := (1−θ)+θx−xθ is always non-negative. Observe
f(1) = 0.

f ′(x) = θ − θxθ−1

{
< 0 0 < x < 1

> 0 x > 1

This proves the inequality.

Theorem 3.2 (Hölder’s inequality)
Suppose 1 < p < ∞. Given p, let the conjugate exponent q satisfy 1

p + 1
q = 1. Then

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤ ‖x‖p ‖y‖q =

(
n∑

i=1

|xi|p
) 1

p

+

(
n∑

i=1

|xi|q
) 1

q

.

Proof. Consider the special case where ‖x‖p = 1, ‖y‖q = 1. All we need to show is∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤
n∑

i=1

|xiyi|.

Without loss of generality, assume xi ≥ 0, yi ≥ 0. Let

xiyi = (xp
i )

1
p (yqi )

1
q .

Then, since 1
p + 1

q = 1, by Equation 3.3 we have

(xp
i )

1
p (yqi )

1
q ≤ 1

p
xp
i +

1

q
yqi .
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Thus,
n∑

i=1

|xiyi| ≤
1

p

n∑
i=1

|xi|p +
1

q

n∑
i=1

|yi|q =
1

p
+

1

q
= 1.

For x,y ∈ Fn, consider normalizing the vectors:∥∥∥∥∥ x

‖x‖p

∥∥∥∥∥
p

=

∥∥∥∥∥ y

‖y‖p

∥∥∥∥∥
p

= 1.

So we get ∣∣∣∣∣
n∑

i=1

xi

‖x‖p
yi

‖y‖p

∣∣∣∣∣ ≤ 1 =⇒

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤ ‖x‖p ‖y‖p .

Corollary 3.3 (Minkowski’s inequality)
x 7→ ‖x‖p is a norm if and only if p ≥ 1.

Proof. Positive definite and absolute homogeneity is clear. We can show that the
norm fails to have the triangle inequality if p < 1 for x = (1, 0, . . . , 0) and y =
(0, 1, . . . , 0), for instance. For the other direction, assume that xi, yi ≥ 0.

‖x+ y‖pp =

n∑
i=1

(xi + yi)
p =

n∑
i=1

(xi + yi)
p−1+1

=

n∑
i=1

(xi + yi)
p−1(xi + yi)

=

n∑
i=1

(xi + yi)
p−1xi +

n∑
i=1

(xi + yi)
p−1yi

≤

(
n∑

i=1

xp
i

) 1
p

+

 n∑
i=1

(xi + yi)

p︷ ︸︸ ︷
(p− 1)q


1
q

+

(
n∑

i=1

ypi

) 1
p

+

(
n∑

i=1

(xi + yi)
(p−1)q

) 1
q

Theorem 3.2
= ‖x‖p ‖x+ y‖

p
q
p + ‖y‖p ‖x+ y‖

p
q
p

= (‖x‖p + ‖y‖p) ‖x+ y‖p−1

=⇒ ‖x+ y‖p ≤ ‖x‖p + ‖y‖p .

3.2. Equivalent norms
Definition 3.1 (Equivalent norms)

March 27, 2023 Two norms ‖ · ‖a, ‖ · ‖b over a vector space, V are said to be equivalent if there exists
constants c, C such that

c ‖v‖a ≤ ‖v‖b ≤ C ‖v‖a
for all v ∈ V .

This is an equivalence relation ∼ on norms, since ‖v‖a ∼ ‖v‖a, ‖v‖a ∼ ‖v‖b implies
1

C
‖v‖b ≤ ‖v‖a ≤ 1

c
‖v‖b .
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Suppose ‖v‖a ∼ ‖v‖b and ‖v‖b ∼ ‖v‖c, such that the constants are m,M and `, L, respec-
tively. Then

m` ‖v‖c ≤ ‖v‖a ≤ ML ‖v‖c .

Example 3.4 (Equivalent norms) – In Rn, we have

max |xi| ≤
n∑

i=1

|xi| ≤ nmax |xi| =⇒ ‖ · ‖∞ ∼ ‖ · ‖1 .

Theorem 3.5
On a finite dimensional vector space V (over F), all norms are equivalent.

Proof. Let the basis of V be {v1, . . . , vn}. Then every vector v ∈ V can be written as
a unique linear combination of the basis vectors: v =

∑n
i=1 xi(v)vi. xi : V → F is a

linear functional. Let
v 7→ ‖v‖∗ :=

n
max
i=1

|xi(v)|

be a norm on V . Let v 7→ ‖v‖ be any other norm. Then

‖v‖ =

∥∥∥∥∥
n∑

i=1

xi(v)vi

∥∥∥∥∥
≤

n∑
i=1

‖xi(v)vi‖ ≤
n∑

i=1

|xi(v)| ‖vi‖

≤ n
max
i=1

|xi(v)| ·
n∑

i=1

‖vi‖ .

So we have found a C such that ‖v‖ ≤ C ‖v‖∗. Define a function F on Rn as

F (x) =

∥∥∥∥∥
n∑

i=1

xivi

∥∥∥∥∥ .
Claim 3.1. F is a continuous function on Rn.

|F (x)− F (y)| =

∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

xivi

∥∥∥∥∥−
∥∥∥∥∥

n∑
i=1

yivi

∥∥∥∥∥
∣∣∣∣∣

≤

∥∥∥∥∥
n∑

i=1

xivi −
n∑

i=1

yivi

∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

(xi − yi)vi

∥∥∥∥∥ ≤ max
i

|xi − yi| ·
n∑

i=1

‖vi‖ �

Consider this on the set K = {x : x ∈ Rn,maxni=1 |xi| = 1} ⊆ Rn, which is closed and
bounded, and is therefore compact. F attains its infimum on K, so

F (x) ≥ a, (∀x ∈ K).
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For arbitrary v 6= 0,

‖v‖ ≤

∥∥∥∥∥
n∑

i=1

xi(v)vi

∥∥∥∥∥ =

∥∥∥∥∥max
i

|xi(v)| ·
n∑

i=1

xi(v)

maxi |xi(v)|
vi

∥∥∥∥∥
= ‖v‖∗

∥∥∥∥∥
n∑

i=1

xi(v)

maxi |xi(v)|
vi

∥∥∥∥∥︸ ︷︷ ︸
≥a

.

3.2.1. Remarks on equivalent norms

March 29, 2023 Example 3.6 – Does the inequality

max
x∈[0,1]

|f(x)| ≤ C

∫ 1
3

0

|f(t)| dt

hold for
• f ∈ C[0, 1]? (No)
• All polynomials?
• All polynomials of degree ≤ 106?

For the last question, we know the LHS and RHS are both norms on polynomials of a bounded
finite degree, which, by Theorem 3.5, are equivalent. Thus, a constant does exist.

Proposition 3.7 (Inequality on `p norms)
If p1 ≤ p2, ‖x‖`p2 ≤ ‖x‖`p1 .

Proof. It helps to normalize:

‖x‖`p1 = 1,

(
n∑

i=1

|xi|p1

) 1
p1

= 1 =⇒ |xi| ≤ 1.

Note that

|xi|p2 ≤ |xi|p1 =⇒

(
n∑

i=1

|xi|p2

) 1
p2

≤ 1.

For general x, consider∥∥∥∥ x

‖x‖`p1

∥∥∥∥
`p2

≤ 1 =⇒ ‖x‖`p2 ≤ ‖x‖`p1 .
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Definition 3.2 (`p(N) norms on infinte series)
Let (xn) ∈`p(N) ≡ `p, the set (vector space) of p-summable sequences, so that

∞∑
i=1

|xi|p

is finite. The norm is given by

‖x‖`p :=

( ∞∑
i=1

|xi|p
) 1

p

.

3.3. Continuous function norms
Definition 3.3 (p-norms on continuous functions)
For any function f ∈ C[a, b], define the p-norm as

‖f‖p :=

(∫ b

a

|f(x)|p dx

) 1
p

Remark 3.8. To show this is a norm, we could try and prove a version of Hölder’s inequal-
ity: ∫ b

a

|f(x)g(x)| dx ≤

(∫ b

a

|f(x)|p dx

) 1
p
(∫ b

a

|g(x)|q dx

) 1
q

,
1

p
+

1

q
= 1.

Another idea is to apply our results for `p-norms to Riemann sums, and take the limit.

Definition 3.4 (Banach spaces)
Complete normed spaces are caled Banach spaces.

Example 3.9 (Banach spaces) – 1. `p(N) is a Banach space.
2. C[a, b] is not complete, so it is not a Banach space.
3. To rectify this, we can create the space Lp[a, b], which requires the Lebesgue integral.

3.4. Linear operators
Definition 3.5 (Linear operator)
Let V,W be vector spaces. T : V → W is a linear operator if

T (αv + βw) = αT (v) + βT (w).

What is the criterion for a linear operator to be continuous?
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Theorem 3.10
For normed vector spaces V,W (both over F), fix two norms on those space. For the
linear operator T : V → W , the following are equivalent:

1. T is continuous everywhere.

2. T is continuous at 0.

3. There is a constant C such that ‖Tv‖W ≤ C ‖v‖V .

Proof. (1) =⇒ (2) is trivial.
(2) =⇒ (3). For ε = 1, there is a δ so that

‖v‖V < δ =⇒ ‖Tv‖W < 1.

Observe that δ
2 · v

‖v‖V
has norm < δ. So∥∥∥∥T (δ

2
· v

‖v‖V

)∥∥∥∥
W

< 1.

But the LHS is the same as
‖Tv‖W ≤ 2

δ
· ‖v‖V .

(3) =⇒ (1). For v1,v2 ∈ V ,

‖T (v1)− T (v2)‖W = ‖T (v1 − v2)‖ ≤ C ‖v1 − v2‖ .

This implies T is Lipschitz continuous. Thus, T is continuous everywhere.

Example 3.11 – Let V be the set of real polynomials with norm ‖p‖ = maxx∈[0,1]|p(t)| and let
W = R. Let Tp = p′(1). Is there a constant C so that |p′(1)| ≤ Cmaxx∈[0,1]|p(t)|? Let pn(t) = tn.
Then

|p′n(1)| = n.

But this can get arbitrarily large.

March 31, 2023
Definition 3.6 (Bounded linear operator, operator norm)
The set of all bounded linear operators T : V → W is L(V,W ). This is a vector space.
A linear operator T : V → W so that

‖Tv‖W ≤ C ‖v‖V

is called a bounded linear operator. It gets this name because it maps bounded sets
to bounded sets. The smallest such C is called the operator norm. An equivalent way
to define this is

‖T‖op := sup
v=1

‖Tv‖W .

Proposition 3.12
If V is finite dimensional, then the linear operator T : V → W where V,W are normed
spaces is (always) continuous.

36



Analysis II Notes 3.4 Linear operators Pramana

Proof. Let v1, . . . , vn be the basis. Write v =
∑n

i=1 xi(v)vi. Then

‖Tv‖W =

∥∥∥∥∥T
[

n∑
i=1

xi(v)vi

]∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

xi(v)T (vi)

∥∥∥∥∥ ≤
n∑

i=1

|xi(v)| ‖T (vi)‖W .

Let C =
∑n

i=1 ‖Tvi‖W . Then with the max norm, we can dominate this by

≤ Cmax |xi(v)| ≤ CA ‖v‖V ,

by Theorem 3.5. Theorem 3.10 finishes.

3.4.1. Matrix norms

Definition 3.7 (Matrix norm)
Let A ∈ Rn×m, so that A : Rm → Rn. Equip Rm and Rn with the `a and `b norm
respectively (a, b ∈ [1,∞]). The matrix norm is defined as

‖A‖a→b := sup
‖x‖a=1

‖Ax‖b .

Many of these matrix norms can be interesting, and can motivate discussions of other
parts of linear algebra to solve.

‖Ax‖2→2 =

 m∑
i=1

∣∣∣∣∣∣
∑
j

ai,jxj

∣∣∣∣∣∣
2


1
2

≤

 m∑
i=1

∣∣∣∣∣∣∣
 n∑

j=1

a2i,j

 1
2 ( n∑

i=1

|xj |2
) 1

2

∣∣∣∣∣∣∣
2


1
2

= ‖x‖2

 m∑
i=1

n∑
j=1

|ai,j |2
 1

2

︸ ︷︷ ︸
S

=: ‖x‖2 ‖A‖HS

We call sum (S) the Hilbert-Schmidt norm of the matrix, which does indeed define a norm,
but not the 2 norm we are looking for.

Indeed, suppose A has e-values λ1, . . . , λn. Then

‖A‖HS =

 n∑
j=1

λ2
j

 1
2

,

‖Ax‖2 =

(
n∑

i=1

|λjxj |2
) 1

2

≤ max
j

|λj | ‖x‖2 ,

which gives us a better bound than the HS norm.

Definition 3.8 (Orthogonal vectors)
x isApril 3, 2023 orthogonal to y if xTy =

∑
i xiyi = 0.
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Remark 3.13. The spectral theorem tells us that every real symmetric matrix has real
eigenvalues and has an orthonormal basis (orthogonal basis where all basis vectors have
norm 1) of eigenvectors.

Let U be a matrix formed out of n orthogonal basis vectors u1, . . . ,un. Then UTU = UUT =
I. With this fact, we can prove the following proposition.

Proposition 3.14
For A ∈ Rn×n so that A is symmetric,

‖A‖2→2 = max
j

|λj |,

where λj are the eigenvalues of A.

Proof. Create the matrix U defined before by the orthogonal basis guaranteed by the
spectral theorem. Given a standard basis vector ej , Uej = uj ⇐⇒ ej = U−1uj .
Thus, AUej = Auj , and by the linearity of U , we can show that U preserves length.
U−1AU = D, where D is diagonal with eigenvalues along the diagonal. This im-
plies A = UDU−1 since U preserves length, we conclude that the maximum we can
“stretch” a vector is maxj |λj |.

Constructing a vector that achieves this bound requires picking an eigenvector that
has the corresponding largest eigenvalue.

Remark 3.15 (A ∈ Cn×n). In the complex case, we replace the word symmetric with
Hermitian, which means that A equals its conjugate transpose, AT .

Theorem 3.16
For any matrix A,

‖A‖2→2 =
√
max

j
|µj |,

where µj are the eigenvalues of ATA.

Proof.

‖Ax‖22 =
∥∥(Ax)T (Ax)

∥∥
2
=
∥∥xTATAx

∥∥
2

= ‖x‖2
∥∥ATAx

∥∥
2

≤ ‖x‖2 ·max
j

|µj | · ‖x‖2 .

This implies ‖A‖2→2 ≤
√
maxj |µj |. To show that it reaches this bound, pick the

eigenvector of ATA that has the maximum |µj0 |.

3.5. Derivatives
April 7, 2023 3.5.1. Fréchet derivatives
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Definition 3.9 (Fréchet differentiability)
A function f : V → W , where V and W are normed vector spaces, with U ⊆ V which
is open, is said to be (Fréchet) differentiable at x ∈ U is there exists a (bounded)
linear operator R : V → W so that

lim
h→0

‖F (x+ h)− F (x)− Th‖W
‖h‖V

= 0. (3.4)

If this is true, then we write T = DF (x) = DF |x. f is (Fréchet) differentiable if all
x ∈ U ⊆ V are differentiable. When V = Rn, we say that f is totally differentiable
with total derivative Df(x).

Recall that with little-o notation, f(h) = o(g(h)) if

lim
h→0

‖f(h)‖
‖g(h)‖

= 0.

We can form an equivalent requirement for differentiability: Df(x) = T for x ∈ V if and
only if

f(x+ h) = f(x) + Th+ o(‖h‖), as h → 0. (3.5)
We can replace o(‖h‖) with any function E(h) so that ‖E(h)‖ ≤ o(‖h‖).

3.5.2. Directional (Gâteaux) derivatives

Definition 3.10 (Directional (Gâteaux) derivative)
Let V,W be normed vector spaces. Suppose U ⊆ V is open. Let v ∈ V so that v 6= 0.
If the limit

lim
t→0

f(x+ tv)− f(x)

t
(3.6)

exists, we call it the directional derivative of f at x with direction v, and denote it
Dvf |x = Dvf(x).

If directional derivatives exist for all v 6= 0, then f is Gâteaux differentiable at x.

Definition 3.11
If V = Rn, consider the standard basis ej = (0, . . . , 1︸︷︷︸

jth index

, . . . , 0) for 1 ≤ j ≤ n. We

denote the jth partial derivative of f at a as

∂f(a)

∂xj
:= Dejf(a) = lim

t→0

f(a+ ej)− f(a)

t
. (3.7)

Assume that f : V → W is (Fréchet) differentiable at a. Let h = ta in Equation 3.5 so
that

Dvf(a) =
f(a+ tv)− f(a)

t
=

Dfa(tv)

t
+

o(‖tv‖)
t

= Dfa(v) + o(1).

Taking t → 0, we find Dvf(a) = Dfa(v). Therefore, (Fréchet) differentiability implies
directional differentiability in all directions.
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Example 3.17 – The converse of this, that the directional deriative existing in all directions
implies the derivative exists, is not true in general.

Consider

f : R2 → R : (x1, x2) 7→

{
x3
1+2x2

2

x2
1+x2

2
x 6= 0

0 x = 0

Pick u = (u1, u2), and take the directional derivative of f at 0 in direction u:

Duf(0) = lim
t→0

f(0 + tu)− f(0)

t
=

1

t
· t

3u3
1 + 2t3u3

2

t2u2
1 + t2u2

2

=
u3
1 + u3

2

u2
1 + u2

2

.

Note that this is certainly not linear in u. However, if f were differentiable, then it would be
linear in the entries of u:

Df(u) = c1u1 + c2u2.

So the derivative does not exist.

3.5.3. Calculus in Rn

Definition 3.12
April 10, 2023 Given Ω ⊆ Rn which is open, f : Ω → Rm is of class C1(Ω) if ∂fi

∂xj
exists and is contin-

uous for all i, j.

Theorem 3.18
If f ∈ C1(Ω), then f is Fréchet differentiable.

Proof for n = 2, m = 1. Assume a = (a1, a2). Then ∂f
∂x1

(a), and ∂f
∂x2

(a) are continuous
at a. We let

T (h1, h2) =
∂f

∂x1
(a1, a2)h1 +

∂f

∂x2
(a1, a2)h2

be our conjectured derivative. Consider

f(a1 + h1, a2 + h2)− f(a1, a2)− T (h1, h2) = f(a1 + h1, a2 + h2)− f(a1 + h1, a2)

+ f(a1 + h1, a2)− f(a1, a2)

− ∂f

∂x1
(a1, a2)h1 −

∂f

∂x2
(a1, a2)h2.

We can bound

f(a1 + h1, a2)− f(a1, a2)−
∂f

x2
(a1, a2)h1 = o(h1) = o(‖h‖).

For the rest of the equation, we can find use the fact that ∂f
∂x2

is continuous to find a
δ so that ∣∣∣∣ ∂f∂x2

(x1, x2)−
∂f

∂x2
(a1, a2)

∣∣∣∣ < ε,
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provided that |x1 − a1|, |x2 − a2| < δ. We have (for some ξ between a2 and a2 + h2),

f(a1 + h1, a2 + h2)− f(a1 + h1, a2)−
∂f

∂x2
(a1, a2)h2 =

∂f

∂x2
(a1 + h1, ξ)h2 −

∂f

∂x2
(a1, a2)h2

=

(
∂f

∂x2
(a1, ξ)± ε

)
h2 −

∂f

∂x2
(a1, a2)h2

= ±ε · h2

= o(‖h‖).

Combining these two, we find that T is the Fréchet derivative.

Remark 3.19. While we didn’t prove this for the general case, a similar proof follows for
higher n, and we can seperate the function f = (f1, . . . , fm) by each dimension m, making
the proof the same as m = 1, repeated for each dimension.

3.5.4. Derivative rules

Theorem 3.20 (Chain rule)
Let X,Y, Z be normed vector spaces. Given open sets ΩX ⊆ X, ΩY ⊆ Y , let g : ΩX →
ΩY , f : ΩY → Z, and a ∈ ΩX , g(a) ∈ ΩY . Assume f is differentiable at g(a) and g is
differentiable at a. Then f ◦ g is differentiable at a withSince all these

derivatives are
linear operators,

the chained
derivative is a

linear operator
from X to Z.

D(f ◦ g)
∣∣
a
= Df

∣∣
g(a)

◦Dg
∣∣
a
.

Proof. We know g(a + h) − g(a) = Dg|a(h) + o(‖h‖), and f(g(a) + k) − f(g(a)) =
Df |g(a)(k) + o(‖h‖). To combine these to get our result, let k = g(a+ h)− g(a). Then

f(g(a+ h))− f(g(a)) = Df
∣∣
g(a)

[g(a+ h)− g(a)] + o(‖g(a+ h)− g(a)‖)

= Df
∣∣
g(a)

[Dg
∣∣
a
(h)]︸ ︷︷ ︸

(1)

+Dg
∣∣
a
[o(‖h‖)]︸ ︷︷ ︸
(2)

+ o(
∥∥Dg

∣∣
a
(h) + o(‖h‖)

∥∥)︸ ︷︷ ︸
(3)

.

(1) is what we want to show is the derivative. Showing that (2) is o(‖h‖) directly
follows from the fact that Dg|a is a bounded linear operator. For (3), we write

o(‖Dg|a(h) + o(‖h‖)‖)
‖h‖

=
o(‖Dg|a(h) + o(‖h‖)‖)
‖Dg|a(h) + o(‖h‖)‖

·
‖Dg|a(h) + o(‖h‖)‖

‖h‖

≤
o(‖Dg|a(h) + o(‖h‖)‖)
‖Dg|a(h) + o(‖h‖)‖

·
(∥∥Dg

∣∣
a

∥∥
op

+
o(‖h‖)
‖h‖

)
.

The term in the parenthesis remains bounded, and converges to ‖Dg|a‖op. The term∥∥Dg
∣∣
a
(h) + o(‖h‖)

∥∥ ≤
∥∥Dg

∣∣
a

∥∥
op

· ‖h‖+ o(‖h‖).

As h → 0, this term tends to 0, so by the definition of small-o notation, the other part
tends to 0 as well.
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4. Topics in multivariable calculus

April 17, 2023 Multivariable calculus concerns continuous functions f : Rn → Rm, where n and m are
positive integers. By our analysis of derivatives in general normed vector spaces, we can
develop a theory of multivariable calculus.

Definition 4.1 (Gradient)
The gradient of a function f : Rn → Rm at x ∈ Rn is

∇f(x) :=
[
∂1f ∂2f · · · ∂mf

] ∣∣∣
x
,

where ∂i represents the partial derivative of f : ∂if := ∂f
∂xi

.

4.1. Mean value theorem
Recall the standard mean value theorem: for g : I → R, where I ⊆ R is an interval, and
a, b ∈ I, there is a ξ between a and b so that g(b)− g(a) = g′(ξ)(b− a).

Theorem 4.1 (Mean value theorem for real-valued functions)
Let Ω ⊆ Rn be an open set. Suppose a,b ∈ Ω so that the line segement between a
and b, `(a,b) := {a+ t(b− a) | 0 ≤ t ≤ 1}If we want `(a,b)

to exist for all
a,b ∈ Ω, then we

need Ω to be
convex.

is contained in Ω. Suppose f : Ω → R is
differentiable on `(a,b). Then there exists a vector ξξξ ∈ `(a,b) so that

f(b)− f(a) = Df
∣∣
ξξξ
[b− a].

Proof. We apply a change of varibles to g(t) := f(a+ t(b−a)). We may now apply the
MVT on R → R to g. So

g(1)− g(0) = g′(τ)(1− 0), for some τ ∈ (0, 1).

Let U(t) = a+ t(b− a). Then g(t) = f(U(t)), so by the chain rule,

g′(τ) = Dg
∣∣
τ
= Df

∣∣
U(τ)

DU
∣∣
τ
= Df

∣∣
a+τ(b−a)

[b− a].

We naturally want to ask if there is a mean value theorem on Rm-valued functions. The
only reasonable way for us to do this would be to apply the mean value theorem to each
coordinate. However, we can quickly find counterexamples to this.

Example 4.2 (MVT does not hold for Rn → Rm) – Define f1(t) = t2, f2(t) = t3, and let
f : R → R2 be defined as f(x) = (f1(x), f2(x)) = (x2, x3). Consider applying the mean value
theorem to each entry. Then

1 = f1(1)− f1(0) = f ′(t1)(1− 0) =⇒ t1 =
1

2
,

1 = f2(1)− f2(0) = f ′(t2)(1− 0) =⇒ t2 =

√
1

3
.

These would be our only options of t, but they do not agree, so a generalized MVT will not work
for Rm-valued functions.
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Remark 4.3. This also means that we cannot generalize MVT to complex valued func-
tions, since C behaves somewhat like R2 (formal proof is not given here).

Despite this, we can achieve a bound similar to the mean value theorem.

Theorem 4.4 (Mean value theorem on Rm for integrals)
Let Ω ⊆ Rn be open, and convex, and let f ∈ C1(Ω). Then for all a,b ∈ Ω,

f(b)− f(a) =

∫ 1

0

∇f(a+ t(b− a))(b− a) dt.

Proof. Apply the formula in 1 dimension to g(t) = f(a + t(b − a)). Since f(x) = f1(x)...
fm(x)

, we have

 f1(b)− f1(a)
...

fm(b)− fm(a)

 =


∫ 1

0
∇f1(a+ t(b− a))(b− a) dt

...∫ 1

0
∇fm(a+ t(b− a))(b− a) dt

 =:

∫ 1

0

Df(a+ t(b− a)) · (b− a)dt

We note that Df(a+ t(b− a)) is an m× n matrix, and is therefore also an operator, which
acts on the n× 1 vector (b− a). With that noted, we can prove the following theorem.

Theorem 4.5 (Mean value inequality)
Let Rn and Rm use the Eucliean normA proof exists for

all norms, but
using the 2-norm
is convenient for

us.

Let the norm on matrices be the operator norm.
Then for f : Ω → Rm that is differentiable on `(a,b) ∈ Ω, we have

‖f(b)− f(a)‖ ≤ sup
ξξξ∈`(a,b)

∥∥∥Df
∣∣
ξξξ

∥∥∥
op

‖b− a‖ .

Proof. Since we are working in the 2-norm, we have

‖f(b)− f(a)‖2 =

m∑
i=1

(fi(b)− fi(a))(fi(b)− fi(a)).
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Define g(t) =
∑m

i=1(fi(b)− fi(a))fi(a+ t(b− a)). Then

‖f(b)− f(a)‖2 = |g(1)− g(0)|
= |g′(τ)(1− 0)|

=

∣∣∣∣∣
m∑
i=1

(fi(b)− fi(a))∇fi
∣∣
a+τ(b−a)

· (b− a)

∣∣∣∣∣
≤ ‖f(b)− f(a)‖

(
m∑
i=1

∣∣∣∇fi
∣∣
a+τ(b−a)

(b− a)
∣∣∣2) 1

2

(Cauchy-Schwarz)

= ‖f(b)− f(a)‖
∥∥∥Df

∣∣
a+τ(b−a)

(b− a)
∥∥∥

≤ ‖f(b)− f(a)‖ · sup
ξξξ∈`(a,b)

∥∥∥Df
∣∣
ξξξ

∥∥∥
op

‖b− a‖

By cancelling ‖f(b)− f(a)‖ on both sides, we get the inequality.

4.2. Inverse function theorem
April 19, 2023 Recall the inverse derivative result from analysis I: Let f : [x1, x2] → R be differentiable

on (x1, x2) so that f ′(x) > 0 for all x (i.e. f is strictly increasing). f : [x1, x2] → [y1, y2] is
bijective with an inverse f−1 : [y1, y2] → [x1, x2]. Then we have

(f−1)′(y) =
1

f ′(f−1(y))
.

Proposition 4.6 (Local inverse function theorem R → R)
Consider f : [x1, x2] → R. Suppose f ′ exists near a ∈ (x1, x2) and f ′(a) > 0 for all such
values in that interval. Further, suppose that f ′ is continuous at a. Then there exists
an interval U, V ⊆ R so that f : U → V is invertible.

Example 4.7 (Global vs. local invertibility) – Let f(x1, x2) = (x1 cosx2, x1 sinx2). This
function is not globally invertible, as f(x1, x2) = f(x1, x2+2π). However, if we restrict ourselves
to (x1, x2) ∈ (a, b)× (c, d), where 0 < d− c < 2π, 0 < a < b, then we have invertibility.

Definition 4.2
Let Ω ⊆ Rn be open, and let f : Ω → Rn. For a ∈ Ω, we say that f is locally invertible
if there exists an open set U containing a, and an open set V containing f(a) so that
f : U → V is invertible, with inverse denoted f |−1

U , so that

f−1(f(x)) = x, ∀x ∈ U, f(f−1(y)) = y, ∀y ∈ V.
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Theorem 4.8 (Inverse function theorem)
Let Ω ⊆ Rn be open, and let a ∈ Ω. Suppose f : Ω → Rn is a function so that Df exists
on Ω, and Df |aRecall that Df |a

is a matrix in
Rn×n.

is invertible. Further, suppose that x 7→ Df |x is continuous. Then
there exists an open U containing a and an open set V containing f(a) so that f |U is
invertible, f−1 : V → U is differentiable, and

Df−1
∣∣
y
= (Df

∣∣
x
)−1,

where y = f(x).

4.3. Implicit function theorem
April 21, 2023 Some functions are implicit, in that they are not solvable purely in terms of x or y. For

example, the function of a circle, x2 + y2 = c, cannot be turned into a well-defined graph
in terms of y (or x).

Example 4.9 – While the above is true, we can try and solve parts of the function. Given
x2 + y2 − c = 0, we want to find g(x) so that x2 + g(x)2 − c = 0. Suppose we look “near” x = 0
and y > 0. Then we can write y =

√
c− x2 =: g(x), which will give a function for our circle in

terms of x near 0.

In general, suppose we are given a function f from some open set in Rn+m to Rm. We
may split the input variables into two vectors, x ∈ Rn, and y ∈ Rm. We start with writing
f as f(x,y). Then we want to find g(x) so that

f(x, g(x)) = 0.

This is the setup for the following theorem.

Theorem 4.10 (Implicit function theorem)
Given an open set Ω ⊆ Rn+m, let f : Ω → Rm. Consider (x0,y0) ∈ Z, where Z :=
{(x,y) : f(x,y) = 0} is the zero set of f . Suppose that f ∈ C1(Ω,Rm) and Dyf |(x0,y0)

is invertible. Then there is an open U containing x0 and an open V containing y0 so
that there is a differentiable function g : U → Rm such that

Z ∩ (U × V ) = {(x,y) : x ∈ U,y ∈ g(x)} .

This means that
f(x, g(x)) is part
of the zero set, as
described before.

We also have
Dg
∣∣
x
= −(Dyf)

−1
∣∣
(x,g(x))

◦Dxf
∣∣
(x,g(x))

.

Proof. Define F : (x,y) 7→ (x, f(x,y)). To prove this, we would like to show that F
is locally invertible, and find the inverse F−1 (x,0). To do this, we want to apply
Theorem 4.8. We first need to show that DF is invertible. Indeed, we can show that

DF
∣∣
(x0,y0)

=

[
In×n 0

Dxf |(x0,y0)
Dyf |(x0,y0)

]
.

Thus,
det(DF

∣∣
(x0,y0)

) = det(Dyf
∣∣
(x0,y0)

) 6= 0,

since we have assumed Dyf |(x0,y0)
is invertible. F (x0,y0) = (x0,0) by assumption.
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F has an inverse G = F−1 near (x0,0). Consider F im(U, V ) of (x0,0). Define G as

G(x,y) := (G1(x,y), G2(x,y)) = (x, G2(x,y)).

By setting g(x) := G2(x,0),we have f(G(x,0)) = f(x, g(x)) = 0.
To get our formula, we now know for x near x0, f(x, g(x)) = 0. Let w(x) = (x, g(x)),

so (f ◦ w)(x) ≡ 0. Then by the chain rule,

D(f ◦ w)
∣∣
(x,g(x))

= Df
∣∣
w(x)

◦Dw
∣∣
x

=
[
Dxf |(x,g(x)) Dyf |(x,g(x))

] [In×m

Dg|x

]
= Dxf +Dyf

∣∣
x,g(x)

◦Dg
∣∣
x
= 0,

which is equivalent to our formula.

Remark 4.11. If A ∈ GLn(R) (the set of real, invertible n × n matrices), then A + H ∈
GLn(R) for sufficiently small H. To show this, consider first I+H. I claim this is invertible
if ‖H‖ < 1. We have

(I +H)−1 = I −H +H2 −H3 + · · · , (I −H)−1 = I +H +H2 +H3 + · · · .

With our assumption, we can write

(I +H + · · ·+Hm)(I −H) = I −Hm+1,

and a similar formula for I+H. Since
∥∥Hm+1

∥∥ converges to 0, we are done.We use
‖Hm‖ ≤ ‖H‖m

for this.

To extend this
to general A, we can write

A+H = A(I +A−1H).

Since
∥∥A−1H

∥∥ ≤
∥∥A−1

∥∥ ‖H‖, we can get invertibility of A+H when ‖H‖ < 1
‖A−1‖ .

4.4. Proof of inverse function theorem
April 27, 2023 Take a moment to recall the conditions for Theorem 4.8. We will prove that (1) an inverse

f−1 exists, (2) the set V = f im(U) is open, and (3) Df−1
∣∣
y
= (Df |x)−1.

Proof of inverse function theorem. We will turn f(x) = y into a fixed point problem
and apply Banach’s fixed point theorem. Let x = ϕy(x) := x + (Df |a)−1(y − f(x)).
Thus, finding a fixed point of ϕy(x) is the same as finding x so that f(x) = y. For
every y,

Dϕy = I − (Df
∣∣
a
)−1Df

∣∣
x

= (Df
∣∣
a
)−1(Df

∣∣
a
−Df

∣∣
x
)

=⇒ ‖Dϕy‖ ≤
∥∥(Df

∣∣
a
)−1
∥∥ · ∥∥Df

∣∣
a
−Df

∣∣
x

∥∥ .
Choose U so that for x ∈ U , ‖Df |a −Df |x‖ < 1

2
∥∥(Df |a)−1

∥∥ . We now apply Theorem 4.5.
For x, x̃ ∈ U ,

‖ϕy(x)− ϕy(x̃)‖ ≤ sup
ξ∈`(x,x̃)

∥∥∥Dϕy

∣∣
ξ

∥∥∥ · ‖x− x̃‖ ≤ 1

2
‖x− x̃‖ .

Thus, ϕy has a unique fixed point x for all y. Define

f : U → f im(U) =: V.
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Next we show that V is an open set containing f(a). For every y ∈ V , we show
there is an open neighborhood B(y, ε) ⊆ V . Fix y0 ∈ V . Since f |U is injective, there
is only one x0 so that f(x0) = y0. Consider r > 0 so that B(x0, r) ⊆ U . This is a
Banach space. We want to show that for ‖y − y0‖ < ε := r

2
∥∥(Df |a)−1

∥∥ , the map ϕy is a
contraction on B(x0, r) (the closed ball). This implies y ∈ f im(B(x0, r)) ⊆ V .

‖ϕy(x)− x0‖ = ‖ϕy(x)− ϕy(x0) + ϕy(x0)− x0‖
≤ ‖ϕy(x)− ϕy(x0)‖︸ ︷︷ ︸

(1)

+ ‖ϕy(x0)− x0‖︸ ︷︷ ︸
(2)

.

For (1), we can bound

‖ϕy(x)− ϕy(x0)‖ ≤ 1

2
‖x− x0‖ ≤ r

2
.

For (2),

‖ϕy(x0)− x0‖ =
∥∥(Df

∣∣
a
)−1(y − f(x0))

∥∥
≤
∥∥(Df

∣∣
a
)−1
∥∥
op

· ‖y − f(x0)︸ ︷︷ ︸
y0

‖

≤ ε

=
r

2
.

We now use the fact that there is a funcion g : V → U , where g(y) = f−1(y). Let
x = g(y), and k := f(x+ h)− f(x). Consider∥∥g(y + k)− g(y)− (Df

∣∣
x
)−1[k]

∥∥ .
We want to show that this is o(‖k‖). Write

‖h‖ =
∥∥h− (Df

∣∣
a
)−1[k] + (Df

∣∣
a
)−1[k]

∥∥
≤
∥∥h− (Df

∣∣
a
)−1[k]

∥∥+ ∥∥(Df
∣∣
a
)−1[k]

∥∥
≤
∥∥h− (Df

∣∣
a
)−1[k]

∥∥+ ∥∥(Df
∣∣
a
)−1
∥∥
op

‖k‖ .

To bound the first term,

h− (Df
∣∣
a
)−1[k] = h+ (∇f

∣∣
a
)−1(f(x)− f(x+ h))

= x+ h− x+ (Df
∣∣
a
)−1[f(x)− y + y − f(x+ h)]

= ϕy(x+ h)− ϕy(x).

The norm of the last line is bounded by 1
2 ‖h‖. Thus,

1

2
‖h‖ ≤

∥∥(Df
∣∣
a
)−1
∥∥
op

‖k‖ .
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To prove the total derivative of the inverse function, we have∥∥∥∥g(y + k)− g(y)− (Df |x)−1[k]

‖k‖

∥∥∥∥ =

∥∥∥∥g(y + k)− g(y)− (Df |x)−1[f(x+ h)− f(x)]

‖k‖

∥∥∥∥
=

∥∥∥∥g(y + k)− g(y)− (Df |x)−1[f(x+ h)− f(x)]

‖h‖

∥∥∥∥ · ‖h‖‖k‖

≤ C ·

∥∥(Df |x)−1
∥∥
op

· ‖f(x+ h)− f(x)−Df |x[h]‖
‖h‖

→ 0

4.5. Higher-order derivatives
April 26, 2023 Write ∂f

∂xi
=: ∂if . For higher order, we denote the mixed derivative as ∂i ∂jf := ∂

∂xi

∂
∂xj

f .
We want to say something about the relationship between ∂i ∂jf and ∂j ∂if . Define the
finite difference operator as ∆hf(x) := f(x+ h)− f(x). Then we can see

∂if(a) = lim
hi→0

∆hiei(f(x))

hi
,

and
∂j ∂if(a) = lim

hj→0
lim
hi→0

∆hjej (∆hieif(x))

hjhi
.

For any vector h, k, we have ∆k(∆hf) = ∆h(∆kf). However, we may see different effects
in the limit.

Theorem 4.12 (Schwarz’s theorem)
Let U ⊆ Rn so that ∂if, ∂jf , and ∂i ∂jf exist in U and ∂i ∂jf is continuous at a ∈ U .
Then ∂j ∂if exists at a and ∂i ∂jf(a) = ∂j ∂if(a).

Example 4.13 (Conservative vector field) – Let U ⊆ Rn, and F : U → Rn. Is there a function
g so that

∂

∂xi
g = F?

If we assume this is true, then

∂i ∂jg = ∂j ∂ig =⇒ ∂iFj = ∂jFi.

It turns out that this is necessarily true if F = ∇g, and sufficient if U is a convex set. In that
case,

g(x) =

∫ 1

0

(x− a)TFj(a+ s(x− a)) ds,

for an arbitrary line γ (parametrized from 0 to 1),

g(x) =

∫ 1

0

γ′(t)F (γ(s)) ds.
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5. Approximation Theory

5.1. Weierstrass approximation theorem
April 28, 2023 Theorem 5.1 (Weierstrass approximation theorem)

For every continuous function f on [a, b], there exists a sequence of polynomials that
converge uniformly to f .

For a proof of this, see my Analysis I notes. The main tool for this is to use Bernstein
polynomials:

Bnf(t) :=

n∑
k=0

f

(
k

n

)(
n

k

)
tk(1− t)n−k.

We can prove that for [0, 1],

lim
n→∞

sup
t∈[0,1]

(Bnf(t)− f(t)) = 0,

which is the result we want.
Keep in mind that an equivalent way to write the Weierstrass approximation theorem is

“R[x], the set of all polynomials with real-valued coefficients, is dense inC[a, b] (with respect
to the sup metric)”. This wording will show up in the more general Stone-Weierstrass
theorem.

5.2. The Stone-Weierstrass theorem

Theorem 5.2 (Stone-Weierstrass)
Let K be a compact metric space, and A ⊆ C(K). Assume that A:

1. Is a self-adjoint algebra. That is, given f, g ∈ A and c ∈ C,

f + g, f · g, cf, f ∈ A.

2. Seperate points. For x, y ∈ K so that x 6= y, there exists f ∈ A so that f(x) 6=
f(y).

3. Vanishes nowhere. For all x ∈ K, there exists f ∈ A so that f(x) 6= 0.

Then A is dense in C(K).

Proof of Stone-Weierstrass in R. When we assume that all functions maps to R, then
we can remove the assumption that f ∈ A, and let c ∈ R.
Claim 5.1. Assume that A is an algebra satisfying the assumptions of Theorem 5.2.
Let x1, . . . , xn be distinct points in K, and let c1, . . . , cn be arbitrary scalars. Then
there exists f ∈ A so that f(xi) = ci.
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Proof. For every pair (i, j), i 6= j. There exists gi,j so that gi,j(xi) 6= gi,j(xj). For
every j there exists hj so that hj(xj) 6= 0. Let

ui(x) :=

∏
i 6=j

(gi,j(x)− gi,j(xj))

 · hi(x),

ui(xk) =

{
0 if k 6= i,

6= 0 if k = i.

Then taking a linear combination of ui gives us the desired function f .This proves
Stone-

Weierstrass in
the case where K

is finite.

�

If A is an algebra, then A is an algebra, since fn + gn → f + g, fngn → fg, cfn → cf .
Claim 5.2. If f ∈ A, then |f | ∈ A.

Proof. Use Theorem 5.1 for the function g(y) = |y|, and put y = f(x). Given
f , since K is compact, we have −M ≤ f(x) ≤ M . By Theorem 5.1, there is a
sqeuence (qn) that converges uniformly to |y|. Since qn(0) → 0, define pn(y) :=
qn(y)− qn(0). Then

sup
x∈K

|pn(f(x))− |f(x)|| → 0, n → ∞. �

Claim 5.3. If f, g ∈ A, then the functions x 7→ max {f(x), g(x)} and x 7→ min {f(x), g(x)}
are both in A.

Proof. We can write

max {f, g} =
f + g

2
+

|f − g|
2

, min {f, g} =
f + g

2
− |f − g|

2
. �

Claim 5.4. Fix a function f ∈ C(K). For every y ∈ K, there is a function gy ∈ A so
that gy(y) = f(y), and gy(x) < f(x) + ε for all x ∈ K.

Proof. Fix y. Choose a function hx,y ∈ A so that hx,y(y) = f(y) and hx,y(x) =
f(x). There exists a neighborhood Ux so that hx,y(t) < f(x)+ε for t ∈ Ux. Choose
an open cover (Ux)x∈K of K. There is a finite subcover {Uxi

}i=1,...,n since K is
compact. Therefore, we have hxi,y(t) < f(t) + ε for t ∈ Uxi . Then

gy := min
1≤i≤n

hxi,y =⇒ gy(t) < f(t) + ε, ∀t ∈ K. �

With our function gy, we can find an open ball Vy so that gy(t) > f(t) − ε for all
t ∈ Vy. Let (Vy)y∈K be an open cover of K, and choose a finite subcover (Vyj

)j=1,...,m.
Therefore,

φ := max
1≤j≤m

gyj =⇒ f(t)− ε < φ(t).

Since φ(t) < f(t) + ε as well,

|f(t)− φ(t)| < ε, ∀t ∈ K,

therefore, f ∈ A.
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