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1 Events and their probabilities Pramana

1. Events and their probabilities
The following is called Kolgomorov’s axioms for probability.

Definition 1.1.January 25, 2024 A probability space is a triple (Ω,F , P) where

1. Ω is a set of possible outcomes (sample space)

2. F is a collection of subsets of Ω called events, which we assume to be a σ-algebra, i.e.,
it satisfies the following properties:

a) Ω ∈ F ,

b) if A ∈ F , then AC ∈ F , where AC := Ω \A is the complement of A in Ω,

c) if A1,A2, · · · ∈ F , then
⋃

kAk ∈ F .

3. P : F → [0, 1] is a probability measure:

a) P(∅) = 0 and P(Ω) = 1,

b) (σ-additivity) if A1,A2, . . . are countably many disjoint events, then

P

(⋃
k

Ak

)
=

∑
k

P(Ak).

1.1. Properties of P

Proposition 1.1 (Complements of events).January 30, 2024

P(A) = 1− P(AC).

σ-additivity works when the {Ai}
N
i=1 are pairwise disjoint. If instead they are not disjoint,

in the case N = 2 we have

P(A∪ B) = P(A) + P(B) − P(A∩ B).

Theorem 1.2 (Inclusion-exculsion formula). Let {Ai}
n
i=1 be a set of events.

P(A1 ∪ · · · ∪An) =

n∑
i=1

P(Ai) −
∑

i1<i2

P(Ai1 ∩Ai2) +
∑

i1<i2<i3

P(Ai1 ∩Ai2 ∩Ai3)

+ · · ·+ (−1)n−1P(A1 ∩ · · · ∩An)

=

n∑
k=1

(−1)k−1
∑

i1<···<ik

P(Ai1 ∩ · · · ∩Aik).

3



1.1 Properties of P Pramana

Proof. We induct on n. The base case is clear.

P

(
n+1⋃
k=1

Ak

)
= P

((
n⋃

k=1

Ak

)
∪An+1

)

= P

(
n⋃

k=1

Ak

)
+ P(An+1) − P

((
n⋃

k=1

Ak

)
∩An+1

)

=

n∑
k=1

(−1)k−1
∑

i1<···<ik

P(Ai1 ∩ · · · ∩Aik) + P(An+1)

−

n∑
k=1

(−1)k−1
∑

i1<···<ik

P(Ai1 ∩ · · · ∩Aik ∩An+1).

=

n+1∑
k=1

(−1)k−1
∑

i1<···<ik

P(Ai1 ∩ · · · ∩Aik).

Theorem 1.3 (Monotonicity of probability measure).February 01, 2024

1. If A,B ∈ F and A ⊆ B, then P(A) ≤ P(B)

2. If Ak ∈ F for k ∈ N, then

P

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

P(Ak).

If the Ak are disjoint, we have equality.

Proof. (1) Write B = A∪ (B \A). These sets are disjoint, so

P(B) = P(A) + P(B \A) ≥ P(A).

(2) We construct disjoint sets {Bk} such that
⋃∞

k=1 Bk =
⋃∞

k=1Ak. Take B1 = A1, B2 =
A2 \A1, B3 = A3 \ (A1 ∪A2). In other words,

Bk := Ak \ (A1 ∪ · · ·Ak−1) = Ak ∩AC
1 ∩ · · · ∩AC

k−1.

{Bk} are disjoint by construction. Now we show that

∞⋃
k=1

Ak =
∞⋃

k=1

Bk.

By construction, Bk ⊆ Ak, so the right-to-left inclusion is done. For the other, suppose ω ∈⋃∞
k=1Ak. Let k0 be the first value where ω ∈ Ak0

(i.e. ω ∈ Ak0
and ω /∈ A1, . . . ,Ak0−1).

Then ω ∈ Bk0
. With this,

P(A) = P

( ∞⋃
k=1

Bk

)

=

∞∑
k=1

P(Bk) (P(Bk) ≤ P(Ak))

≤
∞∑

k=1

P(Ak).
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1.2 Conditional probability Pramana

Definition 1.2. Let A be an event and (An) a sequence of events. We say An increases up to
A, denoted An ↗ A, if A1 ⊆ A2 ⊆ · · · and

⋃∞
k=1Ak = A. Similarly, we say An decreases

down to A, denoted An ↘ A, if A1 ⊇ A2 ⊇ · · · and
⋂∞

k=1Ak = A.

Proposition 1.4 (Continuity of probability). If An ↗ A or An ↘ A, then

P(A) = lim
n→∞ P(An).

Proof. (An ↗ A) Create the sets B1 = A1, B2 = A2 \A1, B3 = A3 \A2, continuing with
Bk := Ak \Ak−1. We have ∞⋃

k=1

Bk =
∞⋃

k=1

Ak = A,

so

P(A) = P

( ∞⋃
k=1

Bk

)

=

∞∑
k=1

P(Bk)

= lim
n→∞

n∑
k=1

P(Bk)

= lim
n→∞ P

(
n⋃

k=1

Bk

)
= lim

n→∞ P(An).

(An ↘ A)

A =
∞⋂

k=1

Ak =⇒ AC =
∞⋃

k=1

AC
k .

So we can follow the same proof as before to show

P(AC) = lim
n→∞ P(AC

n).

1.2. Conditional probability
Definition 1.3.February 06, 2024 Let (Ω,F , P) be a probability space. Given A,B ∈ F with P(B) > 0, the
conditional probability of A given B is

P(A | B) =
P(A∩ B)

P(B)
.

Theorem 1.5. Fix B ∈ F with P(B) > 0. Consider P(A | B) for all A ∈ F . Then P(• | B) is a
probability measure (Ω,F , P(• | B)) concentrated on B (i.e. P(B | B) = 1).

Proof. We check the axioms of a probability measure (1.1):

(a) P (∅ | B) =
P(∅∩B)

P(B)
=

P(∅)
P(B)

= 0.

P (Ω | B) =
P(Ω∩B)

P(B)
=

P(B)
P(B)

= 1.

(b) Let {Ak} be a countable collection of disjoint events. Then {Ak ∩ B} are disjoint as well.
Therefore,

P

(⋃
k

Ak | B

)
=

P ((
⋃

kAk)∩ B)

P (B)
=

P (
⋃

k(Ak ∩ B))

P (B)
=

∑
k

P (Ak ∩ B)

P (B)
=

∑
k

P (Ak | B) .
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1.2 Conditional probability Pramana

Remark 1.6. Some events under this measure are indistinguishable. For instance,

P (Ω | B) = P (B | B) .

It may make more sense to consider P(• | B) as a probability measure on F ∩B := {A∩ B | A ∈ F }.

By rearranging the terms in the definition of conditional probability, P(A ∩ B) = P(A |

B) · P(B). Let’s further generalize this.

Proposition 1.7. Suppose Ai ∈ F for i = 1, . . . ,n and P(A1 ∩ · · · ∩An) > 0. Then

P(A1 ∩ · · · ∩An) = P(A1)P(A1 | A2)P(A3 | A1 ∩A2) · · ·P(An | A1 ∩ · · · ∩An−1).

Proof. Expanding,We write
A1 ∩ · · · ∩An =

A1 · · ·An as
shorthand.

P(A1) ·
P(A1A2)

P(A1)
· P(A1A2A3)

P(A1A2)
· · · P(A1 · · ·An)

P(A1 · · ·An−1)
= P(A1 · · ·An)

Theorem 1.8 (Law of total probability). Let Bi ∈ F be a countable partitionRecall a partition
of Ω is a

collection of
pairwise disjoint

sets whose union
is Ω.

of Ω. For any
A ∈ F ,

P(A) =
∑

i:P(Bi)>0

P(A | Bi) · P(Bi).

Proof. Recall P(A | Bi) · P(Bi) = P(A∩ Bi). So∑
i:P(Bi)>0

P(A | Bi) · P(Bi) =
∑

i:P(Bi)>0

P(A∩ Bi) = P(A).

Theorem 1.9 (Bayes’ formula). Let Bi ∈ F be a countable partition of Ω, and let A ∈ F ,
P(A) > 0. Then for all k such that P(Bk) > 0, we have

P(Bk | A) =
P(A | Bk)P(Bk)∑

i:P(Bi)>0 P(A | Bi)P(Bi)
.

Proof.

P(Bk | A) =
P(A∩ Bk)

P(A)

=
P (A | Bk)P (Bk)∑

i:P(Bi)>0 P(A | Bi) · P(Bi)
.

Where the numerator comes from rearranging the definition of conditional probability and
the denominator comes from Theorem 1.8.

Example 1.10 (Medical test). This is the classic example for the application of how we should
interpret Bayes’ formula.February 11, 2024 Suppose a test detects a disease 96% of the time with a 2% chance of
being a false positive (that is, a person without the disease receives a positive test). Suppose
0.5% of people carry the disease. If a random person tests positive, what is the probability
that they actually carry it?

Solution. Let D = {person carries the disease} and A = {test is positive}. The problem state-
ment gives us that

P(D) = 0.005, P(A | D) = 0.96, P(A | DC) = 0.02.

Applying Bayes’ formula,

P(D | A) =
P(A | D)P(D)

P(A | D)P(D) + P(A | DC)P(DC)

=
0.96 · 0.005

0.96 · 0.005+ 0.02 · 0.995
≈ 0.194.

The takeaway here is randomly choosing people to test for a disease is not a good idea.
6



1.3 Independent events Pramana

1.3. Independent events
Definition 1.4. A,B ∈ F are independent if P(A∩ B) = P(A)P(B).

A more natural way (for me) to think about this is that A and B are independent if (when
P(B) > 0),

P(A | B) =
P(A∩ B)

P(B)
= P(A).

That is, the outcome of A does not depend on the outcome of B.

Example 1.11 (A, perhaps unintuitive, example of independence). Roll a D20 (a 20-sided die)
once. Let A and B be the events that the value of the roll is divisible by 4 and 5 respectively.
Then since

P(A)P(B) =
1

4
· 1
5
=

1

20
= P(20) = P(A∩ B),

A and B are independent.
If we replace B with the roll divisible by 6, then A and B are not independent:

P (A)P (B) =
1

4
· 3

20
=

3

80
6= 1

20
= P (A∩ B) .

Proposition 1.12. If A and B are independent, then A∗ and B∗ are independent, where ∗
represents either doing nothing or taking the complement.

Proof (AC and B).

P(AC ∩ B) = P(B) − P(A∩ B) = P(B) − P(A)P(B) = P(B)(1− P(A)).

Definition 1.5. We say that events A1, . . . ,An are (mutually) independent if for any collection
Ai1 , . . . ,Aik (where 2 ≤ k ≤ n and (ij) is a strictly increasing multi-index of size k), we have

P(Ai1 ∩ · · · ∩Aik) = P(Ai1) · · ·P(Aik).

Definition 1.6. The events A1, . . . ,An are pairwise independent if P(Ai ∩Aj) = P(Ai)P(Aj)
for all 1 ≤ i < j ≤ n.

Clearly (mutual) independence implies pairwise independence. The converse is false, as
the next example illustrates.

Example 1.13. Flip 3 coins. Let A be the event that the first flip equals the second flip, let B
be the event that the first flip equals the third flip, and let C be the event that the second flip
equals the third flip.

The events themselves are probability 1
2 . Their pairwise intersections are probability 1

4 , so
they are pairwise independent. However, the intersection of all 3 events has probability 1

4 , so
they are not independent.

Proposition 1.14. If A1, . . . ,An are independent, then so are A∗
1, . . . ,A∗

n, where ∗ is either
doing nothing or taking the complement.

Definition 1.7. We say the infinite sequence of events {Ai}
∞
i=1 are independent if A1, . . . ,An

are independent for any n ∈ N.

Theorem 1.15. Let {Ai}
∞
i=1 be independent. Let 1 ≤ k1 < k2 < · · ·. Suppose B1 is created by

set operations on A1, . . . ,Ak1
, B2 is created by set operations on Ak1+1, . . . ,Ak2

, and so on
for all Bn. Then the events B1,B2, . . . are independent.

1.3.1. Conditional independence

Definition 1.8. A1, . . . ,AnFebruary 13, 2024 are said to be conditionally independent given B if P(B) > 0 and
for any 1 ≤ i1 < · · · < ik ≤ n,

P(Ai1 ∩ · · · ∩Aik | B) = P(Ai1 | B) · · ·P(Aik | B).
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2 Random variables Pramana

2. Random variables
As usual, let (Ω,F , P) be a probability space.

Definition 2.1. A random variable is a map X : Ω → RWe also allow
X : Ω → R ∪ {∞}.

such that {ω ∈ Ω | X(ω) ≤ C} ∈ F for
all C ∈ R.

Remark 2.1. Another name for a function satisfying this condition is an (F -)measurable func-
tion.

Remark 2.2. If Ω is discrete (i.e. F = 2Ω), then any X : Ω → R is a random variable.

Definition 2.2. An indicator variable is a random variable defined as

IB(ω) =

{
1 if ω ∈ B,
0 if ω /∈ B.

Since

{ω | IB(ω) ≤ C} =


Ω if c ≥ 1,
BC if 0 ≤ c < 1,
∅ if c < 0,

IB is indeed a random variable.

Example 2.3 (Non-measurable functions). We have two examples for non-measurable func-
tions in finite and infinite probability spaces.

1. Let Ω = {1, 2, 3}, F = {∅, {3} , {1, 2} ,Ω}. Let X(ω) = ω. Then

{ω | X(ω) ≤ 1} = {1} /∈ F ,

so X is non-measurable. This is a strange probability space, so this example may seem
contrived. There turn out to be non-measurable functions in spaces we are used to as
well.

2. Let Ω = [0, 1] and F be the Borel sets on [0, 1]. If B /∈ FRecall that
F 6= 2[0,1]!

, then IB is not a random
variable.

As shorthand, we write {X ≤ C} := {ω | X(ω) ≤ C} ∈ F .

Example 2.4. Let Ω = D2 ⊆ R2 be the unit disc. Let F be the Borel sets on Ω, and let P be
given by the area of the event. Define

R : Ω → [0, 1] : (x,y) 7→√
x2 + y2.

To prove this is a random variable, note that {R ≤ C} is either ∅, Ω, or a circle of radius C. All
of these are in F .

2.1. Probability distribution of random variables
Definition 2.3. Suppose X is a random variable.February 15, 2024 The (probability) distribution of X on R is a
probability measure µX on R given by

µX : BR → R,

B 7→ P(X ∈ B) := P
(
X−1(B)

)
= P (ω ∈ Ω | X(ω) ∈ B) ,

for all Borel sets B on R.
8



2.1 Probability distribution of random variables Pramana

Example 2.5. Roll a die infinitely many times. Let N be the random variable representing the
roll which we first get six. What is the distribution of N?

Solution. In the context of the question, it only really makes sense to look at when X = kP(X = k) is the
same as

P(X−1 {k}).

for
some k ∈ N ∪ {∞}. Computing this values, we get

µN(k) = P(X ∈ {k}) = P(X = k)

=

(
5

6

)k−1 (1

6

)
.

µN(∞) = P(no 6)

= 0.

Definition 2.4. We say a random variable X is discrete if there exists a finite or countable set
B ⊆ R such that µX(B) = 1.

Values y ∈ B such that µX(X = y) > 0 are called possible values, so X being discrete is the
same as it having finitely or countably many possible values.

If Ω is discrete, then X is discrete, but X being discrete does not mean that Ω is countable,
since there could be uncountably many values where a random variable has probability zero.

Definition 2.5. The probability mass function (PMF) of a discrete random variable X is a
function fX such that

fX(y) = P(X = y)

for all possible values y of X.

Example 2.6. With the previous die example, fN(k) =
(
5
6

)k−1 (
1
6

)
.

Note that
µX(B) =

∑
y∈B

y possible value

P(X = y) =
∑
y∈B

y possible value

fX(y).

Example 2.7 (Examples of common distributions).

1. Let p ∈ [0, 1]. We say that X has a Bernoulli distribution with parameter p if the PMF of
X is fX(0) = p and fX(1) = 1− p. We write X ∼ Ber(p).

2. Let p ∈ [0, 1]. We say that X has a geometric distribution with parameter p if the PMF
of X is fX(k) = (1− p)k−1p. We write X ∼ Geom(p).

3. Let n be a positive integer. X has a binomial distribution with parameters n, p if the
PMF of X is

fX(k) =

(
n

k

)
pk(1− p)n−k, k = 0, . . . ,n.

We write X ∼ Binom(n,p).

Definition 2.6. The cumulative density function (CDF) of a random variable X (not neces-
sarily discrete!) is given by

FX(s) = P(X ≤ s).

Example 2.8. If X ∼ Ber(p), then

FX(s) = P(X ≤ s) =


0 if s < 0,
p if 0 ≤ s < 1,
1 ifs ≥ 1.

9



2.1 Probability distribution of random variables Pramana

In general, if X is a discrete random variable,

FX(s) = P(X ≤ s) =
∑
y≤C

y possible

fX(y).

Proposition 2.9 (Properties of a CDF). Let FX be a cumulative density function.

0. FX(s) ∈ [0, 1]

1. FX(s) is a monotone increasing function; i.e., s1 ≤ s2 =⇒ FX(s1) ≤ FX(s2).

2. FX(s) is a right-continuous function; i.e. lims↓t FX(s) = FX(t).

3. limt→∞ FX(t) = 1, limt→−∞ FX(t) = 0.

Proof of (2). Let (sn) be a sequence converging to t from above. Then let An = {X ≤ sn}. So
A1 ⊇ A2 ⊇ · · ·, ⋂∞

n=1An = A = {X ≤ t}. Hence, P(An)
n→∞
−−−−→ P(A).

Theorem 2.10 (Existence of CDF on random variable). If F : R → [0, 1] satisfies (1)-(3), then
there exists a probability space and random variable X on it such that FX = F.

The important takeaway is that a CDF works in the place of a non-discrete random variable.

Proposition 2.11.

1. lims↑t FX(s) = P(X < t).

2. Define the above value to be FX(t
−). Then

P(X = t) = P(X ≤ t) − P(X < t) = FX(t) − FX(t
−).

Definition 2.7. A random variableFebruary 20, 2024 X is absolutely continuous if there exists an integrable,
non-negative function f : R → R+ such that

FX︸︷︷︸
CDF

(t) =

∫t
−∞ f(s) ds.

f is called the probability density function (PDF) of X.

Remark 2.12. If f is continuous, then f(t) = dFX
ds (t)

Additionally, we can evaluate the CDF at infinity:

FX(∞) = P(X < ∞) =

∫∞
−∞ f(s) ds = 1.

Example 2.13. Let X be the random variable on the probability space of uniformly at random
picking a point in [0, 1], given by X(ω) = ω. So

P(X ≤ t) = FX(t) =


0 t ≤ 0

1 t ≥ 1

t 0 ≤ t ≤ 1

.

So

F ′X(t) =

{
1 0 ≤ t ≤ 1

0 otherwise
.

10
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Note that the PDF is never unique, since it can take any value at finitely many points without
affecting the CDF.

Theorem 2.14. If a CDF of X is continuous and has derivative at all but countably many
points, then X is absolutely continuous and the PDF of X is equal to p(t) = F ′X(t) (when F ′X(t)
is not defined, it can take on any value).

Remark 2.15. If a CDF is not continuous, then X is not absolutely continuous.

We can calculate the probability distribution on any Borel set B ∈ BR by using an indicator
function as follows:

µX(B) =

∫
B
f(t)dt =

∫∞
−∞ f(t)IB(t) dt.

Proposition 2.16. If f : R → R+ is integrable and
∫∞
−∞ f(t) dt = 1, then f is a PDF for some

random variable X.

Proof. Define the function FX : R → R+ as

FX(t) =

∫t
−∞ f(s) ds

is continuous. Note that f ≥ 0, so∫t
−∞ f(s) ds ≤

∫r
−∞ f(s) ds

if t ≤ r. Therefore, FX is monotone increasing. Finally, limt→∞ FX(t) = 1 and limt→−∞ FX(t) =
0. Therefore, we can apply Theorem 2.10 to get a random variable X.

Remark 2.17 (Probability density 6= probability mass). It’s natural to assume that if f(t) is a
PDF, then f(t) is P(X = t). However, this is not the case. If f is continuous at t, then

P(t− ε < X < t+ ε) =

∫t+ε

t−ε
f(s) ds ≈ f(t)2ε.

So P(X ∈ small interval) = f(t) · length(small interval). Hence, a PDF is not necessarily a
PMF!

Example 2.18 (A hybrid function). Consider the CDF

F(t) =


0 t ≤ 0,
t
2 0 ≤ t < 1,
1 t ≥ 1.

This is neither discrete nor absolutely continuous.

Remark 2.19. F being continuous does not imply that F is absolutely continuous. A common
counterexample is the Cantor function.

In summary:

If a random variable X has a... Discrete Absolutely Continuous
PMF (pX/fX) Yes No
PDF (fX) No Yes
CDF (FX) Yes Yes

11
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2.2 Random vectors Pramana

2.2. Random vectors
Definition 2.8. Let (Ω,F , P) be a probability space. A d-dimensional random vector on this
space is a measurable function

X : Ω → Rd.This means that
for B ∈ BRd,
{X ∈ B} ∈ F .

Equivalently, a d-dimensional random vector X is a tuple/vector (X1, . . . ,Xd) of random
variables Xi : Ω → R.

Definition 2.9. A random vector X = (X1, . . . ,Xn) is discrete if all Xi are discrete. The PMF
of X is

pX(y1, . . . ,yd) = P(X1 = y1, . . . ,Xd = yd).

Example 2.20. Consider a fair coin that lands 1 or 2. Let Ri be the result of the ith flip. Let

X =

[
R1 + R2

R1R2

]
.

Then we have

P

(
X =

[
2
1

])
=

1

4
, P

(
X =

[
3
2

])
=

1

2
, P

(
X =

[
4
4

])
=

1

4
.

There is a way to recover the PMF of X1, . . . ,Xn from X. We call this the marginal PMF/dis-
tribution of X.

Proposition 2.21. If X = (X1, . . . ,Xd) is a discrete random vector, then

fXi
(yi) =

∑
y1,...,yi−1,yi+1,...,yd

pX(y1, . . . ,yi, . . . ,yd).

In other words, the value of the marginal PMF pXi
at yi is recovered by summing over all

(possible) values in the PMF pX with yi in the ith entry.

Example 2.22.February 22, 2024 Let X = (X1,X2) be a 2-dimensional random vector given by

X1 =

{
1 probability 1

2

−1 probability 1
2

, X2 =

{
1 probability 1

2

2 probability 1
2

.

Then
µX([0, 1]× [0, 1]) = P(X = (1, 1)).

Definition 2.10. Let X be a d-dimensional random vector. The joint CDF of X1, . . . ,Xd (or the
CDF of X) is

FX(t1, . . . , td) = P(X1 ≤ t1, . . . ,Xd ≤ td).

Definition 2.11. Let X be a d-dimensional random vector. X1, . . . ,Xd are jointly absolutely
continuous (or X is absolutely continuous) if there exists an integrable function fX : Rd → R+

such that
FX(t1, . . . , td) =

∫∞
−∞ · · ·

∫∞
−∞ fX(s1, . . . , sd)ds1 · · ·dsd.

Remark 2.23. Again, if fX is continuous, then

fX(s1, . . . , sd) =
∂d (FX(s1, . . . , sd))

∂s1 · · · ∂sd
.

The distribution is given by

µX(B) = P (X ∈ B) =

∫
B
fX(s1, . . . , sd)ds1 · · ·dsd =

∫
Rd

IB(s1, . . . , sd)fX(s1, . . . , sd)ds1 · · ·dsd.

Moreover, ∫
Rd

fX(s1, . . . , sd) ds1 · · ·dsd = 1.

12
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Theorem 2.24. If a non-negative function f is integrable and
∫

Rd f = 1, then f is the PDF of
some random vector X.

Proposition 2.25. Suppose X is an absolutely continuous random vector with PDF fX. Then
the marginal PDF is given by

fXi
(ti) =

∫∞
−∞ · · ·

∫∞
−∞ fX(s1, . . . , si−1, ti, si+1, . . . , sd) ds1 · · ·dsi−1dsi+1dsd.

Proof for d = 2. Let (X, Y) be a random vector with PDF fX,Y . Then

P (X ≤ t) = P (X ≤ t, Y ≤ ∞)

= P ((X, Y) ∈ (−∞, t)× R)

=

∫t
−∞

∫∞
−∞ fX,Y(x,y) dx dy

=

∫t
−∞

(∫∞
−∞ fX,Y(x,y) dy

)
dx

The inner integral
∫∞
−∞ fX,Y(x,y) dy gives us the PDF of X by definition.

Example 2.26. Let X be a random vector that represents uniformly choosing a point at random
on the unit disc D2 ⊆ R2. Then

f(x,y) =
1

π
ID2(x,y).

Suppose we want the PDF of X1. We get that

pX1
(x) =

∫∞
−∞ f(x,y) dy

=

∫∞
−∞

1

π
ID2 dy

=

{
0 |x| ≥ 1

1
π

∫√1−x2

−
√
1−x2 1 dy otherwise.

=

{
0 |x| ≥ 1
2
√
1−x2

π |x| < 1.

We call this the semicircle distribution.

Example 2.27. An absolutely continuous distribution on D ⊆ Rd has PDF

p(x) =
1

vol(D)
ID(x).

If X is an absolutely continuous vector, then all X1, . . . ,Xd are absolutely continuous. The
converse is not true.

Example 2.28. Let X be an absolutely continuous random variable. Suppose

Y(ω) = X(ω), ∀ω ∈ Ω.

So Y is absolutely continuous. But (X, Y) is not absolutely continuous since P (X = Y) = 1, but
the probability of anything in this set in R2 is 0.

13
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2.3. Notions of equality
Definition 2.12. Two random variables (or vectors) X and Y over the same probability space
are equal almost everywhere (almost surely), denoted X = Y a.s., if they disagree on a
measure zero set; that is,

P (X 6= Y) = P ({ω ∈ Ω | X(ω) 6= Y(ω)}) = 0.

Equivalently,
P (X = Y) = P ({ω ∈ Ω | X(ω) = Y(ω)}) = 1.

Definition 2.13. Suppose X and Y are random variables (or vectors) (not necessarily over the

same probability space!). We say that X and Y are equal in distribution X
d
= Y if P (X ∈ B) =

P (Y ∈ B) for all Borel sets B.

Example 2.29. Let X represent flipping a fair coin (where tails is 0 and heads is 1) and Y

represent either choosing 0 or 1 with probability 1
2 . Then X

d
= Y.

Proposition 2.30.February 27, 2024 If X, Y are random variables on the same space and X = Y a.s., then X
d
= Y.

Proof. Notice that P (X 6= Y) = 0, so any subset of {X 6= Y} also has probability zero.

P (X ∈ B) = P (X ∈ B,X = Y) + P (X ∈ B,X 6= Y)

= P (Y ∈ B,X = Y) + 0

= P (Y ∈ B,X = Y) + P (Y ∈ B,X 6= Y)

= P (Y ∈ B) .

Proposition 2.31. Let X, Y be d-dimensional random vectors. Then

1. Xi = Yi a.s. for all 1 ≤ i ≤ d implies X = Y a.s.

2. Xi
d
= Yi does not necessarily imply X d

= Y.

Proof. (1)

P (X 6= Y) = P

(
d⋃

i=1

{Xi 6= Yi}

)
≤

d∑
i=1

P (Xi 6= Yi) = 0.

(2) Consider the probability space of flipping a pair of fair coins. Define

X = (X1,X2) : (ω1,ω2) 7→ (ω1,ω2),
Y = (Y1, Y2) : (ω1,ω2) 7→ (ω2,ω1).

All Xi, Yi (i = 1, 2) are Ber
(
1
2

)
random variables, but

P (X ∈ {(0, 0), (1, 1)}) =
1

2
, P (Y ∈ {(0, 0), (1, 1)}) = 1.

Both of these propositions indicate that equality in distribution is a weaker condition that
almost sure equality.

2.4. Functions of random variables
Let X be a random variable and g : R → R be measurable (that is, {x | g(x) ≤ C} is a Borel set).
Let Y = g(X). Then the distribution of Y is

P (y ∈ B) = P (g(X) ∈ B) = P
(
X ∈ g−1(B)

)
= µX(g

−1(B)),

g is not necessarily invertible, so g−1(B) = {x | g(x) ∈ B} is the preimage of B.
14



2.5 Change of variables Pramana

Example 2.32. Suppose Y = (X− 2)2. Express the CDF of Y in terms of the CDF of X.

Solution. If s < 0, then FY(s) = 0. If s = 0, then FY(s) = P (X = 2). What remains to check is
when s > 0. We have

FY(s) = P
(
(X− 2)2 ≤ s

)
= P

(
−
√
s ≤ X− s ≤

√
s
)

= P
(
2−

√
s ≤ X ≤ 2+

√
s
)

= FX(
√
5+ 2) − FX((2−

√
5)−).i.e. the left limit

Since X is absolutely continuous, the left limit is equal to the limit, and P (X = 2) = 0, so
this equation becomes nicer:

FX(s) =

{
0 s ≤ 0,
FX(

√
5+ 2) − FX(2−

√
5) s > 0.

2.4.1. Functions of discrete variables

If X discrete, then Y = g(X) is also discrete (its possible values are g(xi)). So

P (Y = yi) =
∑

x∈g−1(yi)

P (X = x) .

Problem 2.1. Uniformly choose a value in Ω = {−2,−1, 0, 1, 2}. Let X(ω) = ω, and Y = X2.
Compute the PMF of X and Y.

2.4.2. Continuous variables with discontinuous functions

Example 2.33. Let X be a random variable with CDF

FX(x) =

{
1
x2 x ≥ 1,
0 otherwise.

Define Y = bXc, which is not continuous. We compute the PMF for k = 1, 2, . . . as

P (Y = k) = P (bXc = k) = P (k ≤ X ≤ k+ 1) =

∫k+1

k

1

x2
dx =

1

k(k+ 1)
.

2.5. Change of variables
This section covers some technical facts not from class about functions of two random vari-
ables. Consider the jointly continuous random variables X and Y with joint probability density
function fX,Y . Let another pair of random variables (U,V) be defined as functions of (X, Y) as

U = g(X, Y), V = h(X, Y).

We can find fU,V through a change of variables. Suppose K is a region such that fX,Y(x,y) =
0 outside K. This implies P ((X, Y) ∈ K) = 1. Define

G(x,y) = (g(x,y),h(x,y)).

This is a bijective function from K onto its image (call it L). Denote G−1(u, v) = (q(u, v), r(u, v)).
Assume further that

15
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(i) q and r has continuous partial derivatives ∂q
∂u , ∂q

∂v , ∂r
∂u , and ∂r

∂v are continuous on L.

(ii) The Jacobian

Jac(u, v) = det
[
∂q
∂u (u, v) ∂q

∂v (u, v)
∂r
∂u (u, v) ∂r

∂v (u, v)

]
6= 0

on L.

Theorem 2.34. Under the above assumptions, the joint PDF of (U,V) is given by

fU,V (u, v) = fX,Y(q(u, v), r(u, v)) |Jac(u, v)|

for (u, v) ∈ L and is 0 for (u, v) outside L.

This can be generalized to more dimensions with the Jacobian of higher-dimensional func-
tions. Notice that this is effectively just change of variables from multivariable calculus.

Example 2.35. Let (X, Y) be a uniformly chosen point on the unit disc D2. Let (R,Θ) be the
polar coordinates of the chosen point. What is the joint PDF of (R,Θ)?

Solution. We have x = r cos θ, y = r sin θ. The Jacobian is

Jac(r, θ) = det
[

cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ+ r sin2 θ = r.

The joint PDF of (X, Y) is given by 1
π in D2 and 0 outside. Then

fR,Θ(r, θ) =

{
1
πr (r, θ) ∈ D2,
0 otherwise.

16
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3. Independence of random variables
Recall that the events A1, . . . ,An are independent if for all 1 ≤ i1 < · · · < ik ≤ n,

P
(
Ai1 · · ·Aik

)
= P

(
Ai1

)
· · ·P

(
Aik

)
.

Definition 3.1. Let X1, . . . ,Xn be random variables on some probability space. Then X1, . . . ,Xn

are independent if

P (X1 ∈ B1, . . . ,Xn ∈ Bn) = P (X1 ∈ B1) · · ·P (Xn ∈ Bn)

for all Borel sets B1, . . . ,Bn ∈ BR.We avoid
checking every
1 ≤ i1 < · · · <

ik ≤ n by setting
some Bi = R.

If {Xi}
∞
i=1 is a countable collection of random variables, we say that {Xi} are independent if

X1, . . . ,Xn are independent for all n ∈ N.

Remark 3.1. It is hard to check all Borel sets. Luckily, it suffices to check for all Bi = (−∞, ci]
for ci ∈ R, i = 1, . . . ,n. In other words,

P (X1 ≤ c1, . . . ,Xn ≤ cn) = P (X ≤ c1) · · ·P (X ≤ cn)

or
FX(c1, . . . , cn) = FX1

(c1) · · · FXn
(cn).

Example 3.2. If X1, . . . ,Xn are discrete random variables, X1, . . . ,Xn are independent ⇐⇒
P (X1 = x1, . . . ,Xn = xn) = P (X1 = x1) · · ·P (Xn = xn)

for all possible values x1, . . . , xn.

Proof. ( ⇐= ) is obvious. ( =⇒ , n = 2) check the definition:

P (X1 ∈ B1,X2 ∈ B2) =
∑

xi∈Bi
xi possible

P ((X1,X2) = (x1, x2)) =
∑

xi∈Bi
xi possible

P (X1 = x1)P (X2 = x2) .

Example 3.3. Flip a fair coin and let Xi =

{
1 ith coin is H,
0 otherwise.

(so Xi ∼ Ber
(
1
2

)
). Then

P (X1 = x1, . . . ,Xn = xn) =
1

2n
= P (X1 = x1) · · ·P (Xn = xn) .

Remark 3.4.February 29, 2024 If we can write P(X1 = x1, . . . ,Xn = xn) = g1(x1) · · · gn(xn) for some func-
tions g1, . . . ,gn, then X1, . . . ,Xn are independent, and there are constants c1, . . . , cn such that∏n

j=1 cj = 1, and gj(x) = cjP
(
Xj = x

)
for all x. This method is somewhat “by inspection,”

by looking at the PMF and seeing if we can factorize it into an x and y term.

Example 3.5. Let X, Y : N → [0, 1] be random variables such that

P (X = k, Y = `) =
1

3k−122`−1
.

Therefore,

P (X = k) =

∞∑
`=1

P (X = k, Y = `) =

∞∑
`=1

1

3k−122`−1
=

2

3k
.

P (Y = `) =

∞∑
k=1

P (X = k, Y = `) =

∞∑
k=1

1

3k−122`−1
=

3

22`
.

Taking the product of these two shows us that X and Y are independent. We could have also
immediately noticed by inspection that 1

3k−122`−1 = 1
3k−1 · 1

22`−1 .
17
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3.1. Absolutely continuous independence
Theorem 3.6. Let X1, . . . ,Xn be jointly absolutely continuous. Then X1, . . . ,Xn are indepen-
dent ⇐⇒ pX1,...,Xn

(x1, . . . , xn) = pX1
(x1) · · · pXn

(xn).

Definition 3.2. Let X1, . . . ,Xn be random variables on the same space. We say X1, . . . ,Xn are
independent identically distributed (i.i.d.) if they are (1) independent and (2) all Xi have the
same distribution.

3.2. Functions of independent random variables
Theorem 3.7. Let X1, . . . ,Xn be independent random variables. Let gi be measurable func-
tions. Then g1(X1), . . . ,gn(Xn) are also independent.

Proof.

P (g1(X1) ∈ B1, . . . ,gn(Xn) ∈ Bn) = P
(
g−1
1 (B1), . . . ,g−1

n (Bn)
)

= P
(
g−1
1 (B1)

)
· · ·P

(
g−1
n (Bn)

)
(g−1

i (Bi) are Borel)

= P (g1(X1) ∈ B1) · · ·P (gn(Xn) ∈ Bn) .

Theorem 3.8. Let {Xi}
∞
i=1 be independent. Then if Y1 is a measurable function of X1, . . . ,Xk1

,
Y2 is a measurable function of Xk1+1, . . . ,Xk2

, etc., then Y1, Y2, . . . are independent as well.

3.3. Random trials and some named distributions
March 05, 2024 Many of our named distributions aries from considering series of random trials. That is,

picking X1,X2, . . . i.i.d. and considering random variables formed out of them.
For example, if X1,X2, . . . , ∼ Ber(p) are independent, then the distribution of the first suc-

cess N = minn {Xn = 1} is Geom(p). Another example is that the number of successes in the
first n trials is Binom(n,p).

Problem 3.1. What is the probability distribution of the second success (call this N2 for now)?
What about the rth success (Nr)?

Solution. For r = 2, the possible values are k = 2, 3, . . .. One of the first k− 1 trials will be a
success. There are

(
k−1
1

)
ways to choose it. The probability for each event is (1− p)k−2p2.

Hence, P (N2 = k) =
(
k−1
1

)
(1− p)k−2p2.

It’s clear that P (Nr = k) =
(
k−1
r−1

)
(1− p)k−rpr.

We call this distribution the negative binomial distribution: Negbin(r,p). As a sanity check,
Negbin(1,p) = Binom(p).

Consider counting rare events. If we have Xn ∼ Binom(n, λ
n ), then as n grows, we have

more trials, but a smaller chance of success. We compute (for possible k: 0, 1, 2, . . . ,n),

P (Xn = k) =

(
n

k

)(
λ

n

)k (
1−

λ

n

)n−k

.

Problem 3.2. What is the limit as n → ∞? Verify this is a distribution.

18
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Solution.

lim
n→∞ n · · · (n− k+ 1)

(k · · · 2 · 1)nk

(
1−

λ

n

)n−k

λk =
e−λλk

k!
.

To check this is indeed a distribution, we need to check the probabilities sum to 1. Indeed,

∞∑
k=0

λk

k!
e−λ = e−λ

∞∑
k=0

λk

k!
= e−λeλ = 1.

We call this the Poisson distribution: Poisson(λ).
Now suppose we are waiting for a rare event to happen. Let Tn ∼ Geom( λn ) and consider

the random variable Tn
n . The possible values of Tn/n will get dense in R as n → ∞, so we

would assume this becomes a continuous random variable in the limit. Let’s look at the CDF:

P (Tn/n ≤ x) = 1− P (Tn/n > x) = 1− P (Tn > nx) .

Problem 3.3. Fix λ. What is the limit of P (Tn/n ≤ x) as n → ∞?

Solution.

lim
n→∞ P (Tn > nx) = lim

n→∞
(
1−

λ

n

)bnxc
= e−λx.

So
lim

n→∞ P (Tn/n > x) = 1− e−λx

T = Tn/n is absolutely continuous so we can compute its PDF:

fT (x) =

{
λe−λx if x > 0

0 otherwise.

We call this the exponential distribution: Exp(λ).

Proposition 3.9. Exp(λ) has a memoryless property. That is, given t, s > 0,

P (T > t+ s | T > t) = P (T > s) .

Imagine T measures the life of something. This says that past t time units have no influence
on its survival for the next s time units.

Proof. The RHS is e−λs. The LHS is

P (T > t+ s, T > t)

P (T > t)
=

e−λ(t+s)

e−λt
= e−λs.

In fact, this is the only continuous distribution with this property. Indeed, suppose G(t) =
P (T > t) is memoryless. Then

G(t+ s)

G(t)
= G(s) =⇒ G(t+ s) = G(t)G(s).

Taking the log,
log(G(t+ s)) = log(G(t)) + log(G(s)).

This is a Cauchy function equation. It has a unique continuous solution and some evil non-
continuous solutions.
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3.3.1. Trials with multiple outcomes

Suppose we get i = 1, . . . , r with probability pi (such that
∑r

i=1 pi = 1). Let Xd be the number
of trials with outcome d. Then

Xd ∼ Binom(n,pd).

We can look at the joint distribution X1, . . . ,Xr. We call this a multinomial distribution:
Multinom(n, r,p1, . . . ,pr). The probability of seeing event j, aj times (

∑r
j=1 aj = n) is

P (X1 = a1, . . . ,Xr = ar) =

(
n

a1, . . . ,ar

)
p
a1
1 · · · par

r

=
n!

a1! · · ·ar!
p
a1
1 · · · par

r

3.4. Distribution of sum of independent random variables
March 07, 2024 Let X, Y be random variables. A simple operation to take on these variables is addition. What

is the distribution of X+ Y?
If X, Y are discrete, then X+ Y is discrete. If we further suppose that X, Y are independent,

we can compute

P (X+ Y = n) =
∑
a

P (X = a, Y = n− a)

=
∑
a

P (X = a)P (Y = n− a)

=
∑
a

pX(a)pY(n− a).

This sum is a discrete convolution of pX and pY . Another way to write this is

pX ∗ pY(u) =
∑
a

pX(a)pY(u− a).

Notice that this sum only needs to be taken over a where a is a possible value of X and u− a
is a possible value of Y.

If X and Y absolutely continuous and independent then X+ Y is absolutely continuous (on
the other hand, if we drop the independent assumption, we could consider X and −X, whose
only possible value is 0).

fX+Y(z) =

∫∞
−∞ fX(x)fY(z− x) dx.

To derive this, consider the CDF:

P (X+ Y ≤ z) =

∫∫
(x,y)

x+y≤z

f(x,y)dxdy =

∫∫
(x,y)

x+y≤z

fX(x)fY(y)dxdy

=

∫z
−∞ fX(x)fY(u− x) du.

We define the (continuous) convolution of fX and fY as

fX ∗ fY(z) =
∫∞
−∞ fX(x)fY(z− x) dx.
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Example 3.10. Let X, Y ∼ Exp(λ). Then

fX+Y(z) =

∫∞
−∞ fX(t)fY(z− t) dt

=

∫z
0
λe−λtλe−λ(z−t) dt

= λ2
∫z
0
e−λz dt

= λ2ze−λz.

In general, if X1, . . . ,Xn ∼ Exp(λ) are i.i.d., then

fX1+···+Xn
(z) =

{
λnzn−1

(n−1)!
e−λz z > 0

0 otherwise.

We call this distribution the gamma distribution, and denote it Gamma(n, λ). You can extend
the definition to n ∈ R with the actual Γ function.

3.5. Exchangeability
If we draw from a deck without replacement, asking for the probability of the 10th card being
an ace and the 37th draw being a king should be the same as asking if the first draw is an ace
and the second draw is a king.

Definition 3.3. The random variables X1, . . . ,Xn with joint CDF F are exchangeable if for any
permutation σ : {1, . . . ,n} → {1, . . . ,n},

F(x1, . . . , xn) = F(xσ(1), . . . , xσ(n)).

If X1, . . . ,Xn are discrete, then we just need

P (X1 = x1, . . . ,Xn = xn) = P
(
X1 = xσ(1), . . . ,Xn = xσ(n)

)
.

If X1, . . . ,Xn are jointly absolutely continuous with PDF f, then we need

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Example 3.11. I.i.d. random variables are exchangeable.

Example 3.12 (Sampling without replacement). Let (X1, . . . ,Xn) sample without replacement
from {1, . . . ,n}. Then

P (X1 = x1, . . . ,Xn = xn) =

{
0 if (x1, . . . , xn) not a permutation of {1, . . . ,n}
1
n! if (x1, . . . , xn) is a permutation of {1, . . . ,n} ,

which implies X1, . . . ,Xn are exchangeable.

Proposition 3.13. If X1, . . . ,Xn are exchangeable, then for any distinct k1, . . . ,km, the joint
distributions of X1, . . . ,Xm and Xk1

, . . . ,Xkm
are the same.

Proposition 3.14. Let X1, . . . ,Xn be exchangeable. Then for a measurable function g, g(X1), . . . ,g(Xn)
are exchangeable.

Example 3.15. Let X1, . . . ,X8 be i.i.d. random variables from Unif[1, 2]. What is the probabil-
ity that the largest variable is X4?
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Solution. At least one of the variables is the largest (equality happens with probability zero),
so

8∑
i=1

P (Xi is the largest) = 1.

Since Xi are i.i.d., and hence exchangeable,

P (Xi is the largest) = P
(
Xi > Xj | j 6= i

)
= P

(
Xσ(i) > Xσ(j) | j 6= i

)
= P

(
Xσ(i) is the largest

)
.

So

1 =

8∑
i=1

P (Xi is the largest) = 8P (X4 is the largest) =⇒ P (X4 is the largest) =
1

8
.

22



4 Expectation of random variables Pramana

4. Expectation of random variables
March 12, 2024 If X is a discrete random variable, then its expectation is defined as

E [X] =
∑
k

kP (X = k) .

If X is absolutely continuous with PDF f, then its expectation is defined as

E [X] =

∫∞
−∞ xf(x) dx.

It can be thought of as the mean/average of a random variable. In fact, when we say the mean
of a random variable, we mean its expectation.

4.1. Construction
Our class went twice through defining how to get the expectation of random variables. Once
with discrete and absolutely continuous variables, then with a formal measure theoretic con-
struction of the expectation. This section will cover the formal construction.

Let X : Ω → R be a random variable on (Ω,F , P). The goal of this section is to define the
expectation as

E [X] =

∫
Ω

X(ω) dP(ω),

where this integral is the Lebesgue integral of X over (Ω, P). We construct this Lebesgue
integral from a series of approximations.

Let X = IA be an indicator for an event A ∈ F . Then we expect∫
Ω

IA(ω) dP(ω) = P(A).

A variable X is simple if it takes only finitely many real values. Let those values be α1, . . . ,αm

and define Ai := {ω | X(ω) = αi}. Notice that

X(ω) =
∑
m

αiIAi
(ω),

where Ai are disjoint sets. Next we define
∫
Ω dP for a linear sum:∫

Ω
X(ω) dP :=

m∑
i=1

αiP(Ai) =

m∑
i=1

αiP(X = αi).

To go beyond simple random variables, we consider several cases.
First: X is a non-negative random variable. In theory, if we could find simple random

variables X1,X2, . . . such that 0 ≤ Xn(ω) ↗ X(ω), then we could define

E [X] := lim
n→∞ E [Xn] .

The main problem with this is that we don’t know that this is well-defined. That is, if we had
another collection of simple random variables X ′

n ↗ X, then would limn→∞ E [Xn] = E [X ′
n]?

To encompass all possible approximations, we define

E [X] = sup {E [W] | W is a simple random variable such that 0 ≤ W(ω) ≤ X(ω) for all ω ∈ Ω} .

That is, E [X] is the upper limit of the expectation of all approximations by simple variables
(which we can compute!) of X from below. Now the following proposition is reassuring for
us, because it says that any approximation converges to our definition of expectation.
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Proposition 4.1. Any approximation {Xn} of simple random variables such that Xn ↗ X has

E [X] = lim
n→∞ E [Xn] .

So it suffices to find some approximation of X with simple random variables. The actual
construction is defining

Xn(ω) =

{
k
2n if k

2n < X(ω) ≤ k+1
2n , k = 0, 1, . . . ,n2n − 1,

n if X(ω) > n.

By how we defined Xn, if X(ω) ∈ [0,n], then

0 ≤ X(ω) −Xn(ω) ≤ 1

2n
.

Hence, we have convergence.
Next: X is a [−∞,∞]-valued random variable. We define the positive and negative parts

of X as
X+(ω) := X(ω)∨ 0 = max {X(ω), 0} ,

and
X−(ω) := −X(ω)∨ 0 = max {−X(ω), 0}

respectively. Then X+ and X− are non-negatively-valued random variables, so E
[
X+
]

and
E
[
X−
]

are well-defined. Therefore, we let

E [X] := E
[
X+
]
− E

[
X−
]

.

If E
[
X+
]

and E
[
X−
]

both diverge to ∞, then we will say E [X] does not exist. In all other
cases where E

[
X+
]

and E
[
X−
]

converge or diverge to ∞, E [X] is a value in [−∞,∞].

4.1.1. For practical purposes...

There are two cases where we can always compute E [X] and have it “make sense.”

1. If X has a single sign almost surely: P (X ≥ 0) = 1 or P (X ≤ 0) = 1, or

2. if X is absolutely integrable. That is, E [|X|] is finite (hence E
[
X+
]

and E
[
X−
]

are both
finite).

a) If X is discrete, this means
∑

i pi|xi| < ∞.

b) If X is continuous, this means
∫∞
−∞ |x|f(x) dx < ∞.

Example 4.2 (Five discrete and five continuous examples of expecatation). Let’s compute
some expectations.

1. Let IA be an indicator variable for A ∈ F . Then

E [IA] = 0 · P (IA = 0) + 1 · P (IA = 1) = P (IA = 1) = P (A) .

2. Let X be the value of a fair die roll. Then

E [X] =

6∑
i=1

i · 1
6
=

7

2
.

3. Let X ∼ Poisson(λ) (recall this is P (X = k) = λk

k! e
−λ for k = 0, 1, 2, . . .). Then

E [X] =

∞∑
k=0

kP (X = k) =

∞∑
k=0

kλk

k!
e−λ = λe−λ

∞∑
k=1

λk

(k− 1)!
= λ .
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4. Let X be a random variable such that P
(
X = 2k

)
= 1

2k for k = 1, 2, . . .. Notice that∑∞
k=1

1
2k = 1, so this is indeed a discrete random variable. Notice that

E [X] =

∞∑
k=1

2k
1

2k
,

which diverges to ∞, so we say X has expectation ∞.

5. Now consider X such that P
(
X = (−1)k2k

)
= 1

2k for k = 1, 2, . . .. Then

∞∑
k=1

(−1)k2k
1

2k
=

∞∑
k=1

(−1)k,

which is not convergent. To show that it does not have an expectation, we look at X+

and X−:

X+ =

{
22k with probability 1

22k ,
0 with probability 2

3 ,
X− =

{
22k+1 with probability 1

22k+1 ,
0 with probability 1

3 .

It follows that
E
[
X+
]
= ∞, E

[
X−
]
= ∞,

so E [X] does not exist.

6. Let X ∼ Unif[a,b]. Recall that the PDF f of X is

f(x) =

{
1

b−a if x ∈ [a,b],
0 otherwise.

So

E [X] =

∫b
a
x

1

b− a
dx =

b2 − a2

(b− a)2
=

a+ b

2
.

7. Let X ∼ Exp(λ), which has PDF

f(x) =

{
λe−λx x ≥ 0,
0 otherwise.

We compute

E [X] =

∫∞
0

xλe−λx dx
(I.B.P.)
= 0+

∫∞
0

e−λx dx =
1

λ
.

8. Let X ∼ N (µ,σ2), the normal distribution with parameters µ and σ2, which has PDF

f(x) =
1√
2πσ2

e
−

(x−µ)2

2σ2 .

So

E [X] =

∫∞
−∞ x

1√
2πσ2

e
−

(x−µ)2

2σ2 dx

=

∫∞
−∞ (y+ µ)

1√
2πσ2

e
− y2

2σ2 dy (y = x− µ)

=

∫∞
−∞ y

1√
2πσ2

e
− y2

2σ2 dy+ µ

∫∞
−∞

1√
2πσ2

e
− y2

2σ2 dy

= µ .
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9. Let X be a random variable with PDF given by

f(x) =

{
1
2x

− 3
2 x ≥ 1,

0 x < 1.

Then its integral on [1,∞) is 1, but

E [X] =

∫∞
1

x
1

2
x−

3
2 dx =

1

2

∫∞
1

x−
1
2 dx,

which diverges to ∞.

10. We demonstrate an absolutely continuous variable with no expectation. Let X be a
random variable with PDF given by

f(x) =

{
1
4 |x|

− 3
2 |x| ≥ 1,

0 |x| < 1.

Then
E
[
X+
]
=

∫∞
0

x
1

4
x−

3
2 Ix≥1 dx =

1

4

∫∞
1

x−
1
2 dx = ∞,

and

E
[
X−
]
=

∫0
−∞ (−x)f(x) dx = ∞.

So E [X] does not exist.

4.2. Properties of expectation
Proposition 4.3 (Functions of random variables). Let X = (X1, . . . ,Xd) be a random vector
and let g : Rd → R be a measurable function. Then, assuming g ≥ 0 or g(X) is absolutely
integrable,

1. if X1, . . . ,Xd are discrete, then

E [g(X)] =
∑

k possible

g(k)P (X = k) ,

2. if X1, . . . ,Xd are jointly absolutely continuous with PDF f, then

E [g(X)] =
∫

Rd
g(x)f(x) dx.

Proof. For the discrete case, first notice that for some fixed t ∈ Rd,∑
y possible

yI(g(t) = y) = g(t),

because there is only one value of y where g(t) = y: g(t). From this, we prove the result with
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rearrangement.

E [g(X)] =
∑

y possible

yP (X = y)

=
∑

y possible

y
∑

t:g(t)=y

P (X = t)

=
∑

y possible

y
∑

t possible

I(g(t) = y)P (X = t)

=
∑

t possible

P (X = t)
∑

y possible

yI(g(t) = y)

=
∑

t possible

P (X = t)g(t).

For the continuous case, we need the following claim:

Claim 4.1. If X ≥ 0, then E [X] =
∫∞
0 P (X > s) ds. We call P (X > s) a tail probability.

Proof. ∫∞
0

P (X > s) ds =
∫∞
0

(∫∞
s

f(x) dx
)

ds

=

∫∞
0

∫x
0

dsf(x) dx

=

∫∞
0

xf(x) dx

=

∫∞
−∞ xf(x) dx

= E [X] . �

For the absolutely continuous case now,

E [g(X)] =
∫∞
0

P (g(X) > s) ds

=

∫∞
0

(∫
g(X)>s

f(x1, . . . , xd) dx1 · · ·dxd

)
ds

=

∫∞
0

(∫
Rd

Ig(X)>sf(x1, . . . , xd) dx1 · · ·dxd

)
ds

=

∫
Rd

(∫∞
0

Ig(X)>sds
)
f(x1, . . . , xd) dx1 · · ·dxd

=

∫
Rd

g(x1, . . . , xd)f(x1, . . . , xd) dx1 · · ·dxd.

In the case where g � 0, we can take g+ = g∨ 0 and g− = (−g)∨ 0 and get

E [g(X)] = E
[
g+(X)

]
− E

[
g−(X)

]
.

Example 4.4 (Computing expectation of singular function). Let X have CDF

F(x) =


0 x < 0
x
3 x ∈ [0, 1)
1 x ≥ 1.

What is the expectation of X? [notice that X is not discrete nor absolutely continuous]
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Solution. Let U ∼ Unif[0, 3], and

g(u) =

{
u u ∈ [0, 1)
1 u ∈ [1, 3].

Now P (g(U) ≤ s) = F(s), so applying the above theorem,

E [X] = E [g(U)] =

∫∞
−∞ g(x)fU(x) dx =

∫3
0

1

3
g(u) du =

1

3

(∫1
0
u du+

∫3
1
1 du

)
=

5

6
.

Theorem 4.5 (Properties of expectation). Suppose X and Y are non-negative random variables,
or E [X] and E [Y] are finite. Then

(a) (linearity of expectation) E [X+ Y] = E [X] + E [Y], and E [aX] = aE [X] for a ∈ R,

(b) (monotonicity) if X ≥ Y, then E [X] ≥ E [Y],

(c) if P (X = Y) = 1, then E [X] = E [Y],

(d) if X d
= Y, then E [X] = E [Y],

(e) |E [X]| ≤ E [|X|],

(f) suppose X ≥ 0 a.s. and E [X] = 0. Then X = 0 a.s.

4.2.1. Linearity of expectation is OP

The linearity of expectation property is very useful because we don’t need variables to be
independent for it to apply.

Example 4.6. The expectation of X ∼ Binom(n,p) is easily computed by noticing X = X1 +
· · ·+Xn for Xi ∼ Ber(p). Hence, by linearity of expectation,

E [X] =

n∑
i=1

E [Xi] = np .

There are more examples in the rest of the notes and online of where linearity is used.

4.3. Variance and covariance
Definition 4.1. Let X be a random variable. Then E [Xs] (if it exists) is called the s-moment of
the distribution. E [|X|s] is the absolute s-moment of X.

Definition 4.2. Var(X) := E
[
(X− E [X])2

]
is called the variance of X.

By linearity of expectation, the variance is just the second moment minus the expectation
squared: Var(X) = E

[
X2
]
− E [X]2.

Example 4.7. Let X ∼ Binom(n,p). Then X = X1 + · · ·+Xn, where Xi ∼ Ber(p) are i.i.d. So

Var(X) =
n∑

i=1

Var(Xi) = np(1− p) .

Example 4.8 (Variance of normal distribution). The book uses integration by parts. We could
also do the differentiation under the sign trick:∫∞

−∞ y2e−ay2
dy = −

∫∞
−∞

∂

∂a
(e−ay2

) dy = −
∂

∂a

(∫∞
−∞ e−ay2

dy
)

=
√
π
1

2
a− 3

2 =
√
2π.
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Example 4.9. Suppose X = I1 + · · · + In is given by a sum of indicators. Then E [X] =∑n
i=1 E [Ii]. So the variance of X is given by

Var(X) = E
[
(X− E [X])2

]
= E

[
(I1 + · · ·+ In − E [I1] − · · ·E [In])

2
]

= E

 n∑
j=1

(Ij − E
[
Ij
]
)2 + 2

∑
j<k

(Ij − E
[
Ij
]
)(Ik − E [Ik])

 .

If the indicators are independent, then we have

E
[
(Ij − E

[
Ij
]
)(Ik − E [Ik])

]
= E

[
(Ij − E

[
Ij
]
)
]

E [(Ik − E [Ik])] = 0.

Hence,
Var(X) = Var(I1) + · · ·+ Var(In).

Replacing indicators with any random variables, we have the following:

Proposition 4.10. If X1, . . . ,Xn are independent, then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn).

On the other hand, if any Xj and Xk were dependent, the value of

E
[
(Xj − E

[
Xj

]
)(Xk − E [Xk])

]
would be nonzero. We define this to be the covariance of Xj and Xk, denoted Cov(Xj,Xk). So
the variance of X1 + · · ·+Xn has the nice form

n∑
j=1

Var(Xj) + 2
∑
j<k

Cov(Xj,Xk).

By linearity of expectation, Cov(X, Y) = E [XY] − E [X]E [Y]. Notice that Cov(X,X) = Var(X).
If X and Y are independent, then Cov(X, Y) = 0. The converse is not true.

Example 4.11. Let X ∼ Unif({−1, 0, 1}) and Y = X2. Then

Cov(X, Y) = E [XY] − E [X]E [Y] = E
[
X3
]
− E [X]E [Y] = 0.

But X and Y are certainly not independent.

Definition 4.3. If Cov(X, Y) = 0, then we say X and Y are uncorrelated.

This means that Proposition 4.10 also holds if Xj and Xk are uncorrelated for all j 6= k.
Variables being uncorrelated is not the same as them being independent.

Proposition 4.12 (Properties of covariance).

(a) Cov(X, Y) = Cov(Y,X).

(b) Cov(aX+ b, Y) = aCov(X, Y).

(c) More generally, covariance is bilinear:

Cov

 m∑
i=1

aiXi,
n∑

j=1

bjYj

 =

m∑
i=1

n∑
j=1

aibj Cov(Xi, Yj).
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Since Cov(X,X) = Var(X), we derive Var(cX) = Cov(cX, cX) = c2 Cov(X,X) = c2 Var(X).

Definition 4.4. The correlation coefficient of X and Y is given by

Corr(X, Y) :=
Cov(X, Y)√

Var(X)
√

Var(Y)
.

Example 4.13. Let X = IA and Y = IB for A, B events in some probability space. Then

Cov(X, Y) = E [IAIB] − E [IA]E [IB] = P (A∩ B) − P (A)P (B) = P (B) (P (A | B) − P (A)) .

Since Corr(X, Y) has the same sign as Cov(X, Y),

• Corr(X, Y) = 0 =⇒ A and B are independent,

• Corr(X, Y) > 0 =⇒ P (A | B) > P (A), which means B increases the probability of A,
and

• Corr(X, Y) < 0 =⇒ P (A | B) < P (A), which means B decreases the probability of A.

We may wonder why we would bother to look at the sign of Corr(X, Y) instead of the sign
of Cov(X, Y). The key part is that Corr(X, Y) has some normalization.

Theorem 4.14. Let X, Y be random variables. All the following hold:

• −1 ≤ Corr(X, Y) ≤ 1,

• Corr(X, Y) = 1 =⇒ X = aY + b a.s. for a > 0,

• Corr(X, Y) = −1 =⇒ X = aY + b a.s. for a < 0.

Proof. This proof is very similar to the Cauchy-Schwarz inequality proof from analysis. Con-
sider

Var(X−αY) = Var(X) +α2 Var(Y) − 2αCov(X, Y).

This is a quadratic in α, and Var(X−αY) ≥ 0, so its discriminant is non-positive. Hence,

Cov(X, Y)2 − Var(X)Var(Y) ≤ 0.

Proposition 4.15 (Cauchy-Schwarz inequality). Let XMarch 21, 2024 and Y be random variables such that
E
[
X2
]
, E
[
Y2
]
, and E [XY] exist. Then

|E [XY]| ≤
√

E
[
X2
]√

E
[
Y2
]
.

Proof. Consider E
[
(X−αY)2

]
≥ 0.

4.4. Convergence properties
We now return to the construction in subsection 4.1 to formally state/prove some results
about expectation. A converging sequence does not necessarily consist of simple random
variables.

Theorem 4.16 (Monotone convergence theorem). Let X and {Xn}
∞
n=1 be non-negative random-

variables such that Xn ↗ X (that is, 0 ≤ X1(ω) ≤ X2(ω) ≤ · · · ≤ X(ω) and Xn(ω) → X(ω)).
Then E [Xn] → E [X].

Theorem 4.17 (Dominated convergence theorem). Let Xn → X a.s. Suppose there exists a
random variable Y with finite expectation such that |Xn(ω)| ≤ Y(ω) for all ω ∈ Ω. Then

lim
n→∞ E [Xn] = E [X] .
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Proposition 4.18 (Independent expectation is multiplicative). If X, Y are independent with
finite expectation, then

E [XY] = E [X]E [Y] .

Moreover, if X1, . . . ,Xn are independent and gi are measurable functions,

E [g1(X1) · · · gn(Xn)] = E [g1(X1)] · · ·E [gn(Xn)]

We will only prove the first statement. We can prove the second one by noting that g1(X1)
and g2(X2) · · · gn(Xn) are independent and using induction.

Proof. For the discrete case,

E [XY] =
∑
k,`

k`P (X = k, Y = `) =
∑
k

kP (X = k) ·
∑
`

`P (Y = `)

= E [X]E [Y] .

For non-negative, bounded X, Y, suppose 0 ≤ X, Y ≤ M. Let

Xn =

{
k
2n if k

2n ≤ X(ω) ≤ k+1
2n , k = 0, . . . ,M2n−1,

0 otherwise,

and similarly,

Yn =

{
k
2n if k

2n ≤ Y(ω) ≤ k+1
2n , k = 0, . . . ,M2n−1,

0 otherwise.

Notice that Xn ↗ X and Yn ↗ Y and

0 ≤ Xn ≤ X ≤ Xn +
1

2n
, 0 ≤ Yn ≤ Y ≤ Yn +

1

2n
,

which implies

XnYn ≤ XY ≤
(
Xn +

1

2n

)(
Yn +

1

2n

)
.

By monotonicity of expectation,

E [XnYn] ≤ E [XY] ≤ E

[(
Xn +

1

2n

)(
Yn +

1

2n

)]
.

The variables on the LHS and RHS are independent and discrete, so

E [Xn]E [Yn] ≤ E [XY] ≤ E

[(
Xn +

1

2n

)]
E

[(
Yn +

1

2n

)]
= E [Xn]E [Yn]+

1

2n
(E [Xn] + E [Yn])+

1

22n
.

Taking the limit as n → ∞, E [XY] is bounded on both sides by E [X]E [Y], hence giving us the
result.

Now suppose X, Y ≥ 0 but are possibly unbounded. For any integer M > 0, define

XM = min {X,M} , YM = min {Y,M} .

Then XM → X, YM → Y and 0 ≤ XM ≤ X and 0 ≤ YM ≤ Y. Hence,

E [Xn] → E [X] , E [Yn] → E [Y] .

Now by limit properties,

E [XY] = lim
n→∞ E [XnYn] = lim

n→∞ E [Xn]E [Yn] = E [X]E [Y] .

The proof extends to arbitrary random variables by using X+, X−, Y+, Y−.
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5. Law of large numbers
April 02, 2024 Let Xi ∼ Ber(p) i.i.d. and

Sn := # of successes =

n∑
i=1

Xi.

Then Sn
n is the share of successes in n trials (frequency). We expect Sn

n ≈ p. Of course, we
haven’t defined what “≈” means here. There are two different definitions we can use.

Definition 5.1. Let {Xn}
∞
n=1 be defined on the same probability space. We say Xn converges

to X almost surely (limn→∞ Xn = X a.s.) if P (ω | limn→∞ Xn(ω) = X(ω)) = 1.
Xn converges to X in probability (denoted Xn

p
−→ X) if for any ε > 0, limn→∞ P (|Xn −X| > ε) =

0.

The statement that limn→∞ Sn
n = p almost surely is the strong law of large numbers. Sn

n

p
−→ p

is the weak law of large numbers.

5.1. Weak law of large numbers
Theorem 5.1 (Weak law of large numbers/WLNN). Let Xi be i.i.d. with E [Xi] = µ, and
Var(Xi) < ∞. If Sn = X1 + · · ·+Xn, then Sn

n converges to µ in probability.

For this, we need two inequalities.

Theorem 5.2 (Markov’s inequality). Let X ≥ 0. Then for all a > 0,

P (X ≥ a) ≤ E [X]

a
.

Proof.

E [X] = E [X(IX<a + IX≥a)]

= E [X(IX<a)] + E [X(IX≥a)]

≥ E [X(IX≥a)]

≥ E [aIX≥a]

= aP (X ≥ a) .

Theorem 5.3 (Chebyshev’s inequality). Let X be a random variable and Var(X) < ∞, E [X] =
µ. Then for any a > 0,

P (|X− µ| ≥ a) ≤ Var(X)
a2

.

In particular, P (X ≥ µ+ a) ≤ Var(X)
a2 and P (X ≤ µ− a) ≤ Var(X)

a2 .

Proof. The random variable (X− µ)2 is non-negative, so by Markov’s inequality,

P (|X− µ| ≥ a) = P
(
(X− µ)2 ≥ a2

) (5.2)
≤

E
[
(X− µ)2

]
a2

=
Var(X)
a2

.

Proof of Theorem 5.1. The bound 0 ≤ P
(∣∣∣Sn

n − µ
∣∣∣ > ε

)
holds trivially. Notice that

E

[
Sn

n

]
=

1

n
E [Sn] =

1

n
(E [X1] + · · ·+ E [Xn]) =

1

n
(µ+ · · ·+ µ) = µ.
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So by Theorem 5.3,

P

(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤

Var
(
Sn
n

)
ε2

=
Var(Sn)
n2ε2

=
Var(X1) + · · ·+ Var(Xn)

n2ε2

=
nVar(X1)

n2ε2

=
Var(X1)

nε2
.

Since ε and Var(X1) are fixed, as n → ∞, this value tends to 0.

Remark 5.4. Some conditions can be relaxed while still having the statement true.

1. X1, . . . ,Xn do not need to be i.i.d. If we have E [Xi] = µi, then Sn
n − µ1+···+µn

n

p
−→ 0.

2. We don’t need variance to be the same. We just need independence and supi Var(Xi)
being bounded.

3. If
∑

i<j Cov(Xi,Xj) is bounded, then the proof also still works.

4. The variance need not be finite as long as the mean µ is finite.

Example 5.5. Consider flipping a fair coin arbitrarily many times. We will show

P (> 51% of the first n flips are H) → 0

as n → ∞. This is equivalent to showing that

P

(
Sn

n
> 0.51

)
n→∞
−−−−→ 0.

Notice that E [Xi] =
1
2 . We can rewrite this as

P

(
Sn

n
−

1

2
> 0.01

)
n→∞, (5.1)
−−−−−−−−→ 0.

Example 5.6. Flip a biased coin with an unknown probability of heads p. Let Sn be the
number of head in n trials. Then

p̂ =
Sn

n

is a good approximation of p.

5.2. Infinitely often happening events
We need to develop more tools to prove the strong law of large numbers. Consider a sequence
of random variables {Xn}n. Notice that limn→∞ Xn(ω) fails to converge to X(ω) if there exists
an integer k > 0 such that

|Xn(ω) −X(ω)| ≥ 1

k

for infinitely many n. We can write this as the event{
ω | lim

n→∞Xn(ω) 6= X(ω)
}
=

∞⋃
k=1

{
ω | |Xn(ω) −X(ω)| ≥ 1

k
for infinitely many n

}
.
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Let {An} be a sequence of events. Then

{ω | ω ∈ An for infinitely many n} = {ω | for all m > 1 there is some n ≥ m s.t. ω ∈ An}

=
∞⋂

m=1

{ω | there is some n ≥ m such that ω ∈ An}

=
∞⋂

m=1

∞⋃
n=m

An.

We define this as the limit superior (limsup) of An, denoted lim supn→∞An.
The complementary event is

{ω | ω ∈ An for finitely many n} = {ω | there is some m ≥ 1 s.t. for all n ≥ m, ω /∈ An}

=
∞⋂

m=1

∞⋃
n=m

AC
n .

Notice by de Morgan’s laws show this is indeed the complement of the limit superior. Re-
placign AC

n with the events {Bn}n, we call this the limit inferior (liminf) of Bn, denoted
lim infn→∞ Bn :=

⋃∞
m=1

⋂∞
n=m Bn, which is the set of ω that lie in all but finitely many

Bn.
Hence, we can rewrite{

ω | lim
n→∞Xn(ω) 6= X(ω)

}
=

∞⋃
k=1

∞⋂
m=1

∞⋃
n=m

{
ω | |Xn(ω) −X(ω)| ≥ 1

k

}
.

Theorem 5.7. If Xn → X a.s., then Xn
p
−→ X.

Proof. Let ε > 0.

lim
m→∞ P (|Xm −X| ≥ ε) ≤ lim

m→∞ P

( ∞⋃
n=m

{|Xn −X| ≥ ε}

)

= P

( ∞⋂
m=1

∞⋃
n=m

{|Xn −X| ≥ ε}

)
= P (|Xn −X| ≥ ε happens for infinitely many n)

≤ P
(

lim
n→∞Xn(ω) 6= X(ω)

)
= 0.

Theorem 5.8 (Borel-Cantelli lemma). Let {An} be a sequence of events, in the same probability
space. Suppose

∑∞
n=1 P (An) < ∞. Then

P ({ω | ω ∈ An for infinitely many n}) = 0.

Proof. Using the fact that if a series
∑∞

n=1 xn converges, then limm→∞∑∞
n=m xn = 0, we

have

P ({ω | ω ∈ An for infinitely many n}) = P

( ∞⋂
m=1

∞⋃
n=m

An

)

= lim
m→∞ P

( ∞⋃
n=m

An

)

≤ lim
m→∞

∞∑
n=m

P (An) = 0
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Proof with expectation. Let N(ω) =
∑∞

n=1 IAn
(ω) (that is, N is a random variable representing

how many events Ai contain ω ∈ Ω). N is a non-negative random variable with values in
N0 ∪ {∞}, so we may take its expectation:

E [N] = E

[ ∞∑
n=1

IAn

]
= E

[
lim

m→∞
m∑

n=1

IAn

]

= lim
m→∞ E

[
m∑

n=1

IAn

]

= lim
m→∞

m∑
n=1

E [IAn
]

= lim
m→∞

m∑
n=1

P (An)

=

∞∑
n=1

P (An) < ∞.

We got the third inequality by applying Theorem 4.16 to the random variables

Xm =

m∑
n=1

IAn
↗ ∞∑

n=1

IAn
.

Hence, N is finite with probability one. So {ω | ω ∈ An happens for infinitely many n} has
probability zero.

April 9, 2024 The use of the Borel-Cantelli lemma for us is the following corollary.

Corollary 5.9 (A.s. convergence from Borel-Cantelli). Let {Xn}
∞
n=1 and X be random variables

on the same space. Suppose that for all ε,

∞∑
n=1

P (|Xn −X| ≥ ε) < ∞.

Then Xn → X a.s.

Proof. Define the event

Bk :=

{
ω ∈ Ω | |Xn(ω) −X(ω)| ≥ 1

k
happens for only finitely many n

}
for k = 0, 1, . . .. By Theorem 5.8,

∞∑
n=1

P

(
|Xn −X| ≥ 1

k

)
< ∞ =⇒ P

(
|Xn −X| ≥ 1

k
for infinitely many n

)
= 0.

Hence, P (Bk) = 1. Define B :=
⋂∞

k=1 Bk. Then

P
(
BC
)
= P

( ∞⋃
k=1

BC
k

)
≤

∞∑
k=1

P
(
BC
k

)
= 0 =⇒ P (B) = 1.

Let ω ∈ B. So ω ∈ Bk for all k. Hence, there exists an Nk such that for n > Nk,

|Xn(ω) −X(ω)| <
1

k
.

Since this holds for all k, Xn(ω) → X(ω).
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5.3. Strong law of large numbers
Theorem 5.10 (Strong law of large numbers/SLNN). Let Xi be i.i.d. with E [Xi] = µ, and
Var(Xi) < ∞. If Sn = X1 + · · ·+Xn, then Sn

n converges to µ a.s., i.e.

P

({
ω | lim

n→∞ Sn(ω)

n
= µ

})
= 1.

For this proof, we assume that E
[
X4
i

]
is finite (hence the first through fourth moments of

Xi are finite).

Proof. Let Xn := Xn − µ. So E
[
Xn

]
= 0. Define Sn := X1 + · · ·+Xn. Now we want to show

∞∑
n=1

P

(∣∣∣∣Snn
∣∣∣∣ > ε

)
< ∞1

and then apply Corollary 5.9. By rearranging and taking the expression to the fourth power,
we can apply Markov’s inequality.

P

(∣∣∣∣Snn
∣∣∣∣ > ε

)
= P

(
|Sn| > εn

)
= P

(
(Sn)

4 > ε4n4
)

Taking the second
power would

give us the proof
again of the

WLNN.

(5.2)
≤

E
[
(Sn)

4
]

ε2n4
.

Now we bound the expectation in the numerator. First expand (Sn)
4 = (X1 + · · ·+ Xn)

4.
Notice that since Xi is independent, we can write, e.g.

E
[
(X1)

2X2 X3

]
= E

[
(X1)

2
]

E
[
X2

]︸ ︷︷ ︸
=0

E
[
X3

]︸ ︷︷ ︸
=0

= 0.

So any term in the expansion which has any Xi to the first power will vanish. Hence, we have

E
[
(Sn)

4
]
= E

[
(X1 + · · ·+Xn)

4
]

=

n∑
i=1

E
[
(Xi)

4
]
+ 3

∑
i<j

E
[
(Xi)

2
]

E
[
(Xj)

2
]

= nE
[
(X1)

4
]
+ 3n(n− 1)E

[
(X1)

2
]

E
[
(X2)

2
]

=⇒ E
[
(Sn)

4
]

ε2n4
≤ Cn2

ε2n4
(for some fixed C > 0)

=
C

ε2n2
= O(n−2).

Notice that
∑∞

n=1
C

ε2n2 < ∞, so Corollary 5.9 finishes.

Proof with expecatation. Using the bound on E
[
(Sn)

4
]

from the first proof,

E

[ ∞∑
n=1

(
Sn

n

)4
]
=

∞∑
n=1

E
[
(Sn)

4
]

n4
≤

∞∑
n=1

C

n2
< ∞.

1Notice that this looks a lot like the statement in the WLNN. However, if we do the same thing as in the WLNN
proof, we will find that each probability is O(n−1). But then the infinite sum will behave like the harmonic series
1
1 + 1

2 + · · ·, which diverges, and hence we cannot apply Borel-Cantelli.
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We now consider the infinite series
∑∞

n=1

(
Sn
n

)4
as a non-negative random variable. Since

its expectation is finite, it is finite with probability one. So

P

({
ω |

∞∑
n=1

(
Sn(ω)

n

)4

converges

})
= 1.

For each ω such that this holds, we have

lim
n→∞

(
Sn(ω)

n

)4

= 0,

which is equivalent to

lim
n→∞ Sn(ω)

n
= 0,

which gives

lim
n→∞ Sn(ω)

n
= µ.

5.3.1. Application: renewal theory

Let Xi be i.i.d. non-negative random variables with mean E [Xi] = µ > 0. Think of each Xi as
the time it takes for a lightbulb to go out. Let

Tn := X1 + · · ·+Xn,

(e.g. the time for the ith lightbulb to burn out). We want to examine the random variable

Nt := #cycles up to time t

(e.g. the number of lightbulbs burnt out) for t ∈ N0. The collection {Nt}
∞
t=0 is an example of

a stochastic process. Nt
t measures how many cycles there are per unit time (e.g. how many

lightbulbs you use per unit time).

Theorem 5.11. Nt
t → 1

µ a.s.

Proof. First notice that as t → ∞, Nt → ∞. Theorem 5.10 tells us that Tn
n → µ a.s. We have

TNt
≤ t < TNt+1

=⇒ TNt

Nt
≤ t

Nt
<

TNt+1

Nt+1
· Nt+1

Nt
.

Since
(
TNt
Nt

)
t

is a subsequence of
(
Tn
n

)
n

,

lim
t→∞ TNt

Nt
= µ.

Hence,

µ ≤ lim
t→∞ t

Nt
≤ µ lim

t→∞ Nt+1

Nt
= µ.

5.4. Fluctuations
Example 5.12 (Coupon colletor’s problem). Stochastic processes show up in many situations.
For example, suppose each time period, we sample a random number (with replacement)
from {1, . . . ,n} and store it in a bag. Let Tn be the time to get all the numbers from 1 to n.
Define τk as the time it takes to collect k different coupons for 0 ≤ k ≤ n. Define Xn =

37



5.4 Fluctuations Pramana

τk − τk−1 as the time it takes to collect one more coupon after collecting k− 1 of them. Notice
we can write

Tn = τn = (τn − τn−1) + · · ·+ (τ1 − τ0) + τ0︸︷︷︸
=0

= Xn + · · ·+X1.

Hence,

E [Tn] =

n∑
k=1

E [Xk] .

The probability of choosing a number different from the k− 1 you already have is n−(k−1)
n .

As a result,

Xk ∼ Geom
(
n− (k− 1)

n

)
=⇒ E [Xk] =

n

n− (k− 1)
.

So

E [Tn] =

n∑
k=1

n

n− (k− 1)
= n ·

(
1+

1

2
+ · · ·+ 1

n

)
.

Define the harmonic number as

Hn := 1+
1

2
+ · · ·+ 1

n
.

From analysis, we have the asymptotics of the harmonic numbers:

Hn = logn+ γ+
1

2n
+O

(
1

n2

)
,

where γ is a constant (the Euler-Mascheroni constant). From this, we know that E [Tn] be-
haves like n logn. That is,

E [Tn]

n logn

n→∞
−−−−→ 1.

Suppose we want to know the fluctuation of Tn around E [Tn]. Precisely, this is

P

(∣∣∣∣Tn − E [Tn]

n logn

∣∣∣∣ > ε

)
.

We can rearrange and use Chebyshev’s inequality to bound this value:

P (|Tn − E [Tn]| > εn logn)
(5.3)
≤ Var(Tn)

ε2n2(logn)2
.

By independence of X1, . . . ,Xk, we have that

Var(Tn) =
n∑

k=1

Var(Xk) =

n∑
k=1

k−1
n(

1− k−1
n

)2
=

n∑
k=1

(k− 1)n

(n− k+ 1)2

= n

n∑
`=1

n− `

`2
(` = n− i+ 1)

≤ n2
n∑

`=1

1

`2
= O(n2).
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So
Var(Tn)

ε2n2(logn)2
=

O(n2)

ε2n2(logn)2
= O

(
1

(logn)2

)
n→∞
−−−−→ 0.

So we actually know
Tn

n logn

n→∞
−−−−→ 1.

Remark 5.13. Recall that Theorem 5.1 says for i.i.d. Xi with mean µ and second moment σ2,
P
(∣∣∣Sn

n − µ
∣∣∣ > ε

)
≤ Var(Sn)

ε2
= σ2

nε2
. This is not the best possible bound; we saw in the proof

of Theorem 5.10 that taking a higher power gave us an O(n−2) bound. We can go even further
than taking powers: for some cases, we have

P

(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤ e−cεn = O(exp(−n)).

Example 5.14.April 11, 2024 Let Xi be i.i.d. Ber(p) variables. The idea is that f(x) = exp(αx) is an increasing
function for any α > 0 (i.e. a < b =⇒ exp(αa) < exp(αb) for any α > 0). Let ε > 0. Then we
seek an upper tail bound:

P

(
Sn

n
> p+ ε

)
= P (Sn > n(p+ ε))

= P
(
eαSn > eαn(p+ε)

)
(for any α > 0)

(5.2)
≤
(

E
[
eαX1

]
eα(p+ε)

)n

=

(
p(eα − 1) + 1

eα(p+ε)

)n

.

Notice that 1+ x ≤ ex, so 1+ p(eα − 1) ≤ ep(e
α)−1. Hence,

P

(
Sn

n
> p+ ε

)
≤
(
ep(e

α−1)−α(p+ε)
)n

= en(p(eα−1)−α(p+ε)).

Now let α = ε
2 . Then (

pe
ε
2 − 1−

ε

2

)
︸ ︷︷ ︸

≤
(
ε
2

)2
−
ε2

2
≤ ε2

4
−

ε2

2
= −

ε2

4
.

Hence,

P

(
Sn

n
> p+ ε

)
≤ e−

nε2

4 = O(exp(−n)).

This bound is called a Chernoff bound, and one exists for P
(
Sn
n < p− ε

)
as well.

The bound in the proof of Theorem 5.1 was

P

(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ε

)
≤ Var(Xi)

nε2
.

This says something about the fluctuation. If ε = c
nα for 0 < α < 1

2 , then Var(X1)
nε2

n→∞
−−−−→ 0.

However, once we take α = 1
2 , i.e. ε = c√

n
, then there is a constant (in fact, a bounded random

variable X) in the limit as n → ∞:
Sn

n
∼ µ+

X√
n

.

What’s surprising is that X is actually the same for any distribution that we take the Xi from,
and that X is Gaussian. Proving this leads us to the content of the central limit theorem.

39



6 Convergence in distribution Pramana

6. Convergence in distribution
Definition 6.1. Let {Xn}

∞
n=1 be a sequence of random variable (not necessarily from the same

probability space) and X some other random variable. We say Xn converges in distribution
to X (denoted Xn ⇒ X or Xn

d
−→ X) if

lim
n→∞ Fn(x) = F(x)

for all x where F is continuous.

Example 6.1 (Examples and non-examples of convergence in distribution).

(a) Suppose Xn ∼ Unif[0, 1+ 1
n ] and X ∼ Unif[0, 1]. Then

Fn(x) =


0 x < 0,

x

1+ 1
n

x ∈ [0, 1+ 1
n ],

1 x > 1+ 1
n ,

F(x) =


0 x > 0,
x x ∈ [0, 1],
1 x > 1.

Then F is continuous at all x ∈ R and limn→∞ Fn(x) = F(x) for all x. So Xn
d
−→ X.

(b) Let Xn = 1
n and X = 0. Then

FXn
(t) =

{
0 t < 1

n ,
1 t ≥ 1

n ,
FX(t) =

{
0 t < 0,
1 t ≥ 0.

As n → ∞,
FXn

(0) → 0 6= 1 = FX(0).

However, this does not bar us from convergence in distribution, because FX is not con-
tinuous at t = 0.

(c) Convergence in distribution is a fairly weak condition. Indeed, let X, Y ∼ Ber(p) and
Xn = X and Yn = Y for all n. Then

Xn
d
−→ X, Yn

d
−→ X,

but
Xn + Yn

d
−→ X+ Y ∼ Binom(2,p),

which does not have the same distribution as

2X ∼ 2 · Ber(p).

(d) Let Xi
i.i.d.
∼ Unif[0, 1] for integers 1 ≤ i ≤ n. Let Mn := max {X1, . . . ,Xn}. We compute

the CDF of Mn:

P (Mn ≤ t) =


0 t < 0,
P (X1 ≤ t, . . . ,Xn ≤ t) t ∈ [0, 1],
1 t > 1.

Notice that P (X1 ≤ t, . . . ,Xn ≤ t) = P (X1 ≤ t)n = tn since Xi are i.i.d. So when
t ∈ [0, 1], we have ∞∑

n=1

P (Mn ≤ t) =

∞∑
n=1

tn =
t

1− t
,

which is finite. By Theorem 5.8, P (Mn ≤ t for infinitely many n) = 0. So P (Mn ≥ t for some n) =

1. Hence, for all ε > 0, with t = 1− ε, we have Mn
n→∞
−−−−→ 1 almost surely, so Mn

d
−→ 1.

We now observe how “weak” this convergence is. Let’s consider the random variable
Mn − 1.
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6.1 Normal distribution Pramana

Claim 6.1. n(1 −Mn)
d
−→ Z ∼ Exp(1). In other words, Mn is “approximately” 1 +

1
nExp(1).

Proof.

P (n(1−Mn) ≤ t) = P

(
1−Mn ≤ t

n

)
= P

(
Mn ≥ 1−

t

n

)
= 1− P

(
Mn < 1−

t

n

)

=


0 t < 0,
1− (1− t

n )n t ∈ [0,n],
1 t > n.

Taking the limit as n → ∞, we arrive at the distribution{
0 t > 0,
1− e−t t ≥ 0,

which is drawn from a Exp(1) distribution. �

Theorem 6.2. Xn
d
−→ X if and only if E [g(Xn)]

n→∞
−−−−→ E [g(X)] for any continuous bounded

g : R → R.

Proof (sketch). ( ⇐= ) We can write P (X ≤ x) = E [IX≤x]. Let g̃(x) be IX≤x. Since g̃ is not
continuous, we can successively approximate it with continuous functions.

( =⇒ ) Approximate g with a sum of indicators. Since each indicator will converge, their
sum does as well.

Remark 6.3. If we require that g is three times differentiable and g, g ′, g ′′, g ′′′ bounded, then
the above theorem still holds.

6.1. Normal distribution
April 16, 2024 Recall N (µ,σ2) is called the Gaussian/normal distribution. It has PDF

ϕµ,σ2(x) =
1√
2πσ2

e
−

(x−µ)2

2σ2 ,

and CDF

Φµ,σ2(x) =

∫x
−∞

1√
2πσ2

e
−

(t−µ)2

2σ2 dt.

We leave it as an integral because there is no elementary form of this CDF. We also omit the
parameters µ,σ2 from the subscript when µ = 0 and σ2 = 1. Notice that ϕ (with parameters
µ = 0, σ = 1) is symmetric about x = 0, so

Φ(−x) = 1−Φ(x).

The normal distribution has the property that if X ∼ N (µ,σ2),

aX+ b ∼ N (aµ+ b,a2σ2).

Therefore, we can “normalize” any normal distribution X to have mean 0 and variance 1 by
letting X = X−µ

σ .
41



6.2 Central limit theorem Pramana

6.2. Central limit theorem
Theorem 6.4 (Central limit theorem). Suppose Xi are i.i.d. random variables with E [Xi] = µ
and Var(Xi) = σ2 < ∞. Let Sn = X1 + · · ·+Xn. Then

Sn −nµ

σ
√
n

d
−→ N (0, 1).

Hence, for −∞ ≤ a < b ≤ ∞,

lim
n→∞ P

(
a ≤ Sn −nµ

σ
√
n

≤ b

)
= P (a ≤ N (0, 1) ≤ b) = Φ(b) −Φ(a). (6.1)

Historically, this was first proven with Xi ∼ Ber(p) (so Sn ∼ Binom(n,p)). This is called the
deMoirve-Laplace theorem, or the normal approximation of the binomal distribution.

A natural next question to ask is how large n has to be for us to see a Gaussian. This is a
hard question, but there exists bounds.

Theorem 6.5 (Berry-Esseen). For some constant C, the error of the central limit theorem is
bounded by ∣∣∣∣P(Sn −nµ√

σn2
−Φ(x)

)∣∣∣∣ ≤ CE
[
|X− µ|3

]
σ3

√
n

.

In 1941, Berry got the bound with C = 188, but Esseen discovered an error in his proof
in 1942, which changed the constant to C = 759. In 2011, Shevtsova proved that C = 0.47
works.

Sketch of proof of Theorem 6.4 for Xi ∼ Ber(p).April 18, 2024 Let q = 1−p. Since Sn is discrete, we can express
the probability as sum:

P

(
a ≤ Sn −np√

npq
≤ b

)
= P (a

√
npq+np ≤ Sn ≤ b

√
npq+np)

=
∑

a
√
npq+np≤k≤b

√
npq+np

k possible

P (Sn = k)

=
∑

a
√
npq+np≤k≤b

√
npq+np

k possible

(
n

k

)
pkqn−k.

The next main idea is to use Stirling’s approximation for the factorial:

n! ∼
(n
ε

)n √
2πn.

Following this, we can show

P (Sn = k) =

(
n

k

)
pkqn−k ∼ ϕ

(
k−np√
npq

)
1√
npq

.

Then with a bound on Riemann sums, we can show the sum is approximately an integral,
hence showing that P

(
a ≤ Sn−np√

npq
≤ b

)
looks vaguely like Φ(b) −Φ(a).
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6.2 Central limit theorem Pramana

6.2.1. Lindenberg swapping

We now prove the general central limit theorem with new techniques. First, “normalize” Xi

by setting

Xi =
Xi − µ

σ
,

so Xi has mean 0 and variance 1. It suffices to show that

X1 + · · ·+Xn√
n

d
−→ N (0, 1).

We know that for Yi ∼ N (0, 1) for 1 ≤ i ≤ n,

Y1 + · · ·+ Yn√
n

d
= N (0, 1).

The idea with Lindenberg swapping is to carefully swap Xi and Yi and show that the differ-
ence does not change too much. To prove convergence in distribution, we need to show

lim
n→∞ E

[
f

(
X1 + · · ·+Xn√

n

)]
− E

[
f

(
Y1 + · · ·+ Yn√

n

)]
= 0 (6.2)

for all three-times differentiable functions f : R → R with f, f ′, f ′′, f ′′′ bounded (this is by
Remark 6.3). For the following proof, assume that Xi has finite third moment (E

[
|Xi|

3
]
< ∞).

Proof of Theorem 6.4 with Lindenberg swapping. Normalize Xi to have mean 0 and variance 1 for
1 ≤ i ≤ n. Define

Sn,k := Y1 + · · ·+ Yk +Xk+1 + · · ·+Xn = Zn,k +Xk+1

Zn,k := Y1 + · · ·+ Yk +Xk+2 + · · ·+Xn.

Notice that Sn,0 = Sn and Sn,n ∼ N (0, 1). We can rewrite (6.2) as

lim
n→∞ E

[
f

(
Sn,0√

n

)]
− E

[
f

(
Sn,n√

n

)]
.

We can also use linearity of expectation and rewrite this as a telescoping sum

lim
n→∞

n−1∑
k=0

E

[
f

(
Sn,k√

n

)
− f

(
Sn,k+1√

n

)]
.

Notice that Sn,k − Sn,k+1 = Xk+1 − Yk+1, so we have the substitutions Sn,k = Zn,k +Xk+1,
and Sn,k+1 = Zn,k + Yk+1, we rewrite the term inside the expectation above as

f

(
Zn,k +Xk+1√

n

)
− f

(
Zn,k + Yk+1√

n

)
.

Expanding this as a Taylor series about Zn,k√
n

, we find that for some Zn,k√
n

≤ ξn,k, ζn,k ≤
Zn,k+Xk+1√

n
,

f

(
Zn,k +Xk+1√

n

)
− f

(
Zn,k + Yk+1√

n

)
= f

(
Zn,k√

n

)
+ f ′

(
Zn,k√

n

)
Xk+1√

n
+

1

2!
f ′′
(
Zn,k√

n

)(
Xk+1√

n

)2

+
1

3!
f ′′′
(
ξn,k√

n

)(
Xk+1√

n

)3

−

(
f

(
Zn,k√

n

)
+ f ′

(
Zn,k√

n

)
Yk+1√

n
+

1

2!
f ′′
(
Zn,k√

n

)(
Yk+1√

n

)2

+
1

3!
f ′′′
(
ζn,k√

n

)(
Yk+1√

n

)3
)

.
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Note that Zn,k is independent of Xk+1 and Yk+1, so expectation will be multiplicative. More-

over, E
[
Xk+1√

n

]
= E

[
Yk+1√

n

]
= 1√

n
, and E

[(
Xk+1√

n

)2]
= E

[(
Yk+1√

n

)2]
= Var

(
Xk+1√

n

)
+

E
[
Xk+1√

n

]2
= Var

(
Yk+1√

n

)
+ E

[
Yk+1√

n

]2
= 1

n so everything but the third power terms will
cancel:

E

[
f

(
Zn,k +Xk+1√

n

)
− f

(
Zn,k + Yk+1√

n

)]
= E

[
1

6
f ′′′
(
ξn,k√

n

)(
Xk+1√

n

)3

−
1

6
f ′′′
(
ζn,k√

n

)(
Yk+1√

n

)3
]

≤ E

[∣∣∣∣∣16f ′′′
(
ξn,k√

n

)(
Xk+1√

n

)3
∣∣∣∣∣+
∣∣∣∣∣16f ′′′

(
ζn,k√

n

)(
Yk+1√

n

)3
∣∣∣∣∣
]

≤ CE

[
|Xn+1|

3

n
3
2

+
|Yn+1|

3

n
3
2

]
(f ′′′ finite)

≤ C ′

n
3
2

= O(n− 3
2 )

n→∞
−−−−→ 0.

(finite third moment)

6.3. Applications
The general rule for applying the central limit theorem for Bernoulli random variables is that
if np(1− p) > 10, Theorem 6.4 will work well. Otherwise, we will use the Poisson estimation
of the binomial, which we will discuss in subsection 6.4.

Example 6.6. Flip a coin 104 times. Let S be the random variable representing the total num-
ber of heads. Estimate P (S ∈ [4850, 5100]).

Solution. Notice that E [S] = 1
2 · 104 = 5000 and Var(S) = 104 · 1

2 ·
(
1− 1

2

)
= 2500, so√

Var(S) = 50. Then

P (4850 ≤ S ≤ 5100) = P

(
−3 ≤ S− 5000

50
≤ 2

)
(6.4)
≈ Φ(2)−Φ(−3) = Φ(2)+Φ(3)−1 ≈ 0.9759.

The actual value is 0.9765..., so this is a good approximation.

6.3.1. Continuity correction

We use continuity correction when we want to approximate a “small” interval with the central
limit theorem.

Example 6.7. Roll a fair die 720 times. What is the probability that there are exactly 113 sixes?

Solution. Let S be the number of sixes. We have S ∼ Binom(720, 16 ), so the exact value is

P (S = 113) =

(
720

113

)(
1

6

)113 (5

6

)720−113

.

To apply Theorem 6.4, we take an interval around the value we want (noting that E [S] =

720
6 = 120 and

√
Var(S) =

√
720 · 1

6 · 5
6 = 10):

P (S = 113) = P (112.5 < S < 113.5)
(6.4)
≈ Φ

(
112.5− 120

10
<

S− 120

10
<

113.5− 120

10

)
≈ 0.0312.
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Remark 6.8. Moving the bounds by ±0.5 (i.e. changing from 113 to (112.5, 113.5)) might seem
arbitrary, but it turns out this is the best value to choose so that the normal is closest to the
actual binomial value. Of course, this value changes if Xi are not taken from a Bernoulli
distribution.

6.3.2. Confidence intervals

Recall from the law of large numbers, if Xi ∼ Ber(p), then

Sn

n
→ p, a.s.

so Sn
n = p̂ gives a good estimate of p. We can compute how good this approximation is using

Theorem 6.4:

P (|p̂− p| < ε) = P

(∣∣∣∣Snn − p

∣∣∣∣ < ε

)
= P (−εn < Sn −np < εn)

= P

(
−εn√

np(1− p)
<

Sn −np√
np(1− p)

<
εn√

np(1− p)

)
(6.4)
≈ Φ

(
εn√

np(1− p)

)
−Φ

(
−εn√

np(1− p)

)

= 2Φ

(
εn√

np(1− p)

)
− 1

≥ 2Φ(2ε
√
n) − 1. (p(1− p) ≤ 0.25 =⇒ √

p(1− p) ≤ 0.5)

Example 6.9. How many times do we need to flip a coin so that p̂ = Sn
n is within 0.05 from p

with probability at least 0.99?

Solution. Using the approximation from above,

P (|p̂− p < ε|) ≥ 2Φ(2 · (0.05) ·
√
n) − 1 ≥ 0.99.

Using a table, we find that Φ(0.1
√
n) ≥ 0.995 =⇒ n = 666.

Definition 6.2. Let r ∈ [0, 1]. The 100r% confidence interval for unknown p is (p̂− ε, p̂+ ε),
where ε > 0 is chosen such that

P (|p̂− p| < ε) ≥ r.

Example 6.10. Suppose we run a random Bernoulli trial 1000 times, and we record 450 suc-
cesses. Find the 95% confidence interval for success probability p.

P (|p̂− p| < ε) ≥ 2Φ(2ε
√
n) − 1 ≥ 0.95 =⇒ ε ≈ 0.03.

So p ∈ (0.42, 0.48) is our 95% confidence interval.

Example 6.11 (Polls). Let p ∈ [0, 1]. Suppose 100p% of people like a brand. Let Sn be the
number of people that like the brand. So p̂ = Sn

n . While this is sampling without replacement,
for large n, Sn is approximately Binom(n,p). For instance, if we want the 90% confidence
interval, we need ε = 0.082.

45



6.4 Poisson estimation of the binomial Pramana

6.4. Poisson estimation of the binomial
It turns out that the Poisson distribution is a good estimation of the binomial when 2np2 is
very small. This is because of the following:

Theorem 6.12. Let Sn ∼ Binom(n,p) and Y ∼ Poiss(np). Then

∞∑
k=0

|P (Sn = k) − P (Y = k)| ≤ 2np2.

Example 6.13. Let S ∼ Binom(10, 1
10 ). Then

P (S ≤ 1) = P (S = 0) + P (S = 1) =

(
9

10

)10

+

(
10

1

)(
1

10

)(
9

10

)9

= 0.7361...

We now approximate this value with the Poisson distribution. The maximum error we expect
is 2np2 = 2

10 . Since np = 1, take Y ∼ Poiss(1). Then P (Y = k) = 1
k!e

−1 for k = 0, 1, . . ..
Hence,

P (S ≤ 1) ≈ P (Y ≤ 1) = P (Y = 0) + P (Y = 1) = e−1 + e−1 = 2e−1 = 0.7358...

So this was a good estimation, and didn’t require calculating any binomials.
We will show that the normal approximation does badly. We find that E [S] = 1 and

Var(S) = np(1− p) = 9
10 < 10. So

P (S ≤ 1) = P

S− 1√
9
10

<
1− 1√

9
10

 (6.4)
≈ Φ(0) =

1

2
.

This is quite far off. Even when we add continuity correction (on the top estimate), we get

P (S ≤ 1) = P (S ≤ 1.5) = P

S− 1√
9
10

≤ 0.5√
9
10

 (6.4)
≈ Φ

 0.5√
9
10

 = 0.7019...,

which is still not as good as the Poisson estimation.
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7. Generating functions in probability
There are three types of generating functions we will go over. Let X be a random variable.

Definition 7.1. The probability generating function of X is defined as

GX(s) := E
[
sX
]

, ∀s ≥ 0.

Example 7.1. Let X ≥ 0 and take integer values. Then

GX(s) =

∞∑
k=0

skP (X = k) .

Definition 7.2. The moment generating function of X is defined as

MX(s) := E
[
etX

]
, for all t where it exists.

Notice that MX(t) = GX(e
t).

Definition 7.3. The characteristic function of X is defined as

ϕX(s) := E
[
eitX

]
= E [cos(tX) + i sin(tX)] , ∀t ∈ R.

The characteristic function is particularly nice because it is always defined for all t. It is
the one most mathematicians would prefer using, but for this section, we will focus on the
moment generating function.

7.1. Properties of moment generating function
Proposition 7.2 (Properties of MX).

(a) MX(0) = 1 (but can be ∞ everywhere else)

(b) d
dtE

[
etX

]
= E

[
d

dte
tX
]
= E

[
XetX

]
. At t = 0, the derivative is E [X]

(c) The nth derivative of MX evaluated at t = 0 is E [Xn] (provided that MX has derivatives
at 0)

(d) If X, Y are independent, then

MX+Y(t) = E
[
et(X+Y)

]
= E

[
etX · etY

]
= E

[
etX

]
E
[
etY
]
= MX(t)MY(t).

(e) If MX = MY holds on some interval around zero, and is finite, then X
d
= Y.

Example 7.3 (Some moment generating functions of known distributions).

1. Let X ∼ Geom(p). Let q = 1− p. Then

GX(s) =

∞∑
k=1

skP (X = k) = ps

∞∑
`=0

(qs)` =

{
ps

1−qs |qs| < 1,∞ |qs| ≥ 1.

MX(t) =

{
pet

1−qet |qet| < 1 ( =⇒ t ≤ log 1
q ),∞ |qet| ≥ 1.
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2. LetApril 23, 2024 X ∼ Poiss(λ). Recall that P (X = k) = λk

k! e
−λ for k = 0, 1, . . .. Then

MX(t) =

∞∑
k=0

etk
λk

k!
e−λ

= e−λ
∞∑

k=0

etk
λk

k!

= e−λ
∞∑

k=0

(etλ)k

k!

= eλ(e
t−1).

3. Computing the normal distribution moment generating function will be very useful for

us later. Let Z ∼ N (0, 1). Then f(t) = 1√
2π

e−
t2

2 . So

MZ(t) =

∫∞
−∞ etsf(s) ds

=
1√
2π

∫∞
−∞ ets −

s2

2
ds

=
1√
2π

∫∞
−∞ e−

1
2 (s−t)2+ 1

2t
2

ds

=
e

t2

2

√
2π

∫∞
−∞ e−

1
2 (s−t)2 dsThe expression

inside the inegral
is just a shifted
Gaussian PDF

(without the 1√
2π

constant), which
evaluates to

√
2π.

= e
t2

2 .

4. Suppose we know that a random variable X has moment generating function MX(t) =
1
5e

−17t + 1
4 + 11

20e
2t. First notice that 1

4 = 1
4e

0·t. Since the random variable X̃ that is
−17 with probability 1

5 , 0 with probability 1
4 and 2 with probability 11

20 has the same mo-
ment generating function (do you see how we found X̃?), a future result on uniqueness

(Proposition 7.7) tells us that X d
= X̃.

We can use the sum property to compute moment generating functions of sums of random
variables.

Example 7.4. Let Xi ∼ Ber(p) be i.i.d. Then MXi
(t) = 1− p+ pet. Let Sn = X1 + · · ·+ Xn ∼

Binom(n,p). Then

MSn
(t) = MX1

(t) · · ·MXn
(t) = (1− p+ pet)n.

Moment generating functions also allow us to compute s-moments of random variables.

Example 7.5. We showed that if Z ∼ N (0, 1), MZ(t) = e
t2

2 . Suppose we want the n-moment
of Z. We could compute this directly:

E [Zn] =
1√
2π

∫∞
−∞ tne−

t2

2 dt.

On the other hand, moment generating functions give us

E [Zn] = M
(n)
Z (0) =

dn

dxn
e

t2

2

∣∣∣∣
t=0

.
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If we express e
t2

2 around t = 0 as a Taylor series then we directly get information about all
the derivatives at zero. Recall the Taylor series expansion of MZ about t = 0 is

MZ(t) =

∞∑
n=0

M
(n)
Z (t)

n!
tn.

We know the Taylor expansion of e
t2

2 :

MZ(t) =

∞∑
n=0

t2n

2nn!
.

Now we compare the coefficients of each series to get the values for M(n)
Z (0), which turn out

to be

E [Zn] =

0 if n is odd,
n!

2
n
2
(
n
2

)
!

if n is even.

The moment generating function also has a nice linearity property:

MaX+b(t) = E
[
et(aX+b)

]
= etbMX(at).

Hence, for example, if X ∼ N (µ,σ2),

MX(t) = etµ+σ2t2

2 .

Example 7.6. Suppose a random variable X has MX(t) =
(
2
3 + 1

3e
t
)n

. Consider

X̂ =

n∑
i=1

Xi,

where Xi are i.i.d random variables that are 0 with probability 2
3 and 1 with probability 1

3 .

Notice that X̂ has the same moment generating function as X, so X
d
= X̂.

Proposition 7.7. Let X, Y be random variables. If there exists δ such that for any t ∈ (−δ, δ),
MX(t) = MY(t), then X and Y are equal in distribution.

Moreover, MXn
→ MX around zero if and only if XN

d
−→ X.

The proof is omitted.

Example 7.8. Suppose X ∼ N (µ1,σ2
1) and Y ∼ N (µ2,σ2

2). Then their moment generating
functions are

MX(t) = eµ1t+
σ2
1
t2

2 , MY(t) = eµ2t+
σ2
2
t2

2 .

So

MX+Y(t) = eµ1t+
σ2
1
t2

2 · eµ2t+
σ2
2
t2

2 = e(µ1+µ2)t+
(σ2

1
+σ2

2
)t2

2 .

By Proposition 7.7, X+ Y ∼ N (µ1 + µ2,σ2
1 + σ2

2).

Proof of Theorem 6.4 with moment generating functions. Suppose Xi are i.i.d. with mean 0 and
variance 1. We want to show that for Sn = X1 + · · ·+Xn,

Sn√
n

d
−→ N (0, 1).
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Then

M Sn√
n

(t) = MSn

(
t√
n

)
=

(
MXi

(
t√
n

))n

.

We can now compute each MXi
:

MXi

(
t√
n

)
= E

[
e

t√
n
X
]

= E

[
1+

t√
n
X+

t2

2n
X2 +O

(
1

n
3
2

)]
= 1+

t2

2n
+O

(
1

n
3
2

)
.

Now one can show with analysis that

M Sn√
n

(t) =

(
1+

t2

2n
+O

(
1

n
3
2

))n
n→∞
−−−−→ e

t2

2 = MZ(t),

where Z ∼ N (0, 1). So Proposition 7.7 tells us Sn√
n

d
−→ Z.
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8. Conditional expectation
The conditional expectation of one variable, X, given another, Y, is a random variable in Y that
gives the “best estimate” of X once knowledge is gained about Y.

Much like for expectation, we defined conditional expectation for “nice” random variables
(in this case, discrete random variables) before getting into the general construction for any
random variables.

We went into less detail with the general construction, and I think it is better to motivate it
with the discrete example, so I will put the general construction after.

8.1. Discrete random variables
Definition 8.1. Let X, Y be discrete random variables on the same space. The conditional
probability mass function of X given Y = y is

pX|Y(x | y) := P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
=

pX,Y(x,y)
pY(y)

.

The conditional expectation of X given Y = y is

E [X | Y = y] :=
∑

x possible

xP (X = x | Y = y) .

Notice that E [X | Y = y] is a function of y. Let’s call it v(y). The conditional expectation of X
given Y is the random variable

E [X | Y] := v(Y).

Example 8.1.

1. Let X and Y be {0, 1}-valued random variables such that

(X, Y) = (0, 0) with probability
3

10
(X, Y) = (1, 0) with probability

2

10

(X, Y) = (0, 1) with probability
1

10
(X, Y) = (1, 1) with probability

4

10

What is E [X | Y]?

Solution. We have,

E [X | Y = 0] = 0 · P (X = 0 | Y = 0) + 1 · P (X = 1 | Y = 0) =
1
10
4
10

=
1

4
,

and

E [X | Y = 1] = 0 · P (X = 0 | Y = 1) + 1 · P (X = 1 | Y = 1) =
4
10
6
10

=
2

3
.

So E [X | Y] =

{
1
4 Y = 0,
2
3 Y = 1.

2. Let X ∼ Poiss(λ) and Y ∼ Poiss(µ). Then Z = X+ Y ∼ Poiss(λ+ µ). Find E [X | Z = `] for
` = 0, 1, . . .

51



8.2 General construction Pramana

Solution.

pX|Z(k | `) =
P (X = k,Z = `)

P (Z = `)
=

P (X = k)P (Y = `− k)

P (Z = `)

=

{
0 k < 0, k > `,

`!
k!(`−k)!

· λkµ`−k

(`+µ)`
k = 0, . . . , `,

=

0 k < 0, k > `,(
`
k

) (
λ

λ+µ

)k (
µ

λ+µ

)`−k
k = 0, . . . , `.

This is a Binom(`, λ
λ+µ ) distribution! So

E [X | Z = `] =
λ

λ+ µ
` =⇒ E [X | Z] =

λ

λ+ µ
Z.

Proposition 8.2 (Properties of conditional expectation). Let X and Y be random variables.

(a) (linearity) E [aX1 + bX2 | Y] = aE [X1 | Y] + bE [X2 | Y]In general, there
is no “linearity”

property for Y. (b) Suppose X and Y are independent. Then E [X | Y] = E [X].

(c) Let f be a function. E [Xf(Y) | Y = f(Y)E [X | Y]]. In particular, E [f(Y) | Y] = f(Y), and
E [Y | Y] = Y.

(d) E [E [X | Y]] = E [X].

Property (d) will show up often in this section. There are many questions about a random
variable X that “happens after” Y, which is taken from a known distribution. We can use
property (d) to compute the expectation of X as some nice function of the expectation of Y,
whose distribution we know.

Proof of property (d). Suppose E [X | Y] = v(Y). Then

E [v(Y)] =
∑

y possible

v(y)P (Y = y)

=
∑

y possible

 ∑
x possible

xP (X = x | Y = y)

P (Y = y)

=
∑

x possible

x

 ∑
y possible

P (X = x, Y = y)


=

∑
x possible

xP (X = x)

= E [X]

8.2. General construction
Definition 8.2. Let X and Y be random variables on the same space. Suppose E [|X|] is finite.
Then the conditional expectation of X given Y is a function v(Y) such that

E [v(Y)h(Y)] = E [Xh(Y)]

for all bounded and (Borel) measurable functions h.
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We will run into some sneaky issues from this definition. Namely:

1. Does such a function v(Y) exist?

2. Is it unique (i.e. can we call it the conditional expectation)?

3. Does the discrete definition match the general case?

(1) and (2) are more fit for a measure theory course. We will prove (3).

Proof of issue (3).

E [v(Y)h(Y)] =
∑

y possible

v(y)h(y)P (Y = y)

=
∑

x,y possible

xh(y)P (X = x | Y = y)P (Y = y)

=
∑

x,y possible

xh(y)P (X = x | Y = y)

= E [Xh(Y)]

Remark 8.3. This definition requires checking a large space of functions. It actually suffices
to show that E [v(Y)h(Y)] = E [Xh(Y)] holds for all h that are indicator functions.

Thankfully, everything from Proposition 8.2 still applies for this definition. For example,
we can prove linearity:

E [(aX1 + bX2)h(Y)] = aE [X1h(Y)] + bE [X2h(Y)]

= aE [E [X1 | Y]h(Y)] + bE [E [X2 | Y]h(Y)]

= E [(aE [X1 | Y] + bE [X2 | Y])h(Y)] .

8.2.1. Absolutely continuous conditional expectation

As expected, we can also do conditional expectation with absolutely continuous random vari-
ables. Suppose X and Y have PDF f. Then we can compute E [X | Y] as follows. Let

fX|Y(x,y) =
f(x,y)
fY(y)

.

Then
E [X | Y = y] =

∫∞
−∞ xfX|Y(x,y) dx = v(y),

for some function v. Then
E [X | Y] = v(Y).

8.3. Examples of conditional expectation
Example 8.4.April 30, 2024 Cut a stick of length 1 once. Take the first portion of the stick after the cut and
cut it again. What is the expected length of the first portion of the stick after both cuts? What
about the variance?

Solution. We can reframe this as a conditional expectation problem. Let Y be the length of the
first portion after the first cut. Let X be the length of the first portion after the second cut.
Notice that once we know Y = y ∈ (0, 1), X ∼ Unif(0,y). Then

E [X | Y = y] =
y

2
=⇒ E [X | Y] =

Y

2
.
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Hence,

E [X] = E [E [X | Y]] = E

[
Y

2

]
=

1

4
.

We can also compute Var(X):

E
[
X2 | Y = y

]
=

∫y
0
x2

1

y
dx =

1

y

[
x3

3

]y
x=0

=
y2

3
=⇒ E

[
X2 | Y

]
=

Y2

3
.

So

E
[
X2
]
= E

[
E
[
X2 | Y = y

]]
= E

[
Y2

3

]
=

1

3

∫1
0
y2 dy =

1

9
.

So
Var(X) = E

[
X2
]
− (E [X])2 =

1

9
−

1

16
=

7

144
.

Let’s continue with this example. Suppose we want to find fX. We have

fX|Y(x | y) =

{
1
y 0 < x < y

0 otherwise.
, fY(y) =

{
1 0 < y < 1

0 otherwise.

Then

fX,Y(x,y) = fX|Y(x | y)fY(y) =

{
1
y 0 < x < y < 1

0 otherwise.

With the joint PDF, we can compute the marginal PDF fX by integrating:

fX(x) =

∫∞
−∞ fX,Y(x,y) dy =

{∫1
x

1
y dy = − log x 0 < x < 1

0 otherwise.

Notice now that E [X] and E
[
X2
]

are now computable as integrals. However, they are much
harder than the solution we gave before.

Example 8.5. Suppose n people apply for a job that has two screening tests. The first test
has a probability p of success. Only people who passe the first test may take the second one,
which has probability r of success.

Let L be the number of people who passed the second test. What is E [L]? What is the
distribution of L (i.e. pL)?

Solution. Let M be the number of people who passed the first test. Given M = m, we have
L ∼ Binom(m, r). Then

E [L | M = m] = mr =⇒ E [L | M] = Mr.

Then
E [L] = E [E [L | M]] = E [Mr] = rE [M] = npr.

We know

pL|M(` | m) =

(
m

`

)
r`(1− r)m−`, (` = 0, 1, . . . ,m)

and

pM(m) =

(
n

m

)
pm(1− p)n−m. (m = 0, 1, . . . ,n)

So

pL,M(`,m) = pL|M(` | m)pM(m)

=

(
m

`

)
r`(1− r)m−`

(
n

m

)
pm(1− p)n−m. (0 ≤ ` < m ≤ n)
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Giving us (for 0 ≤ ` ≤ n),

pL(`) =

n∑
m=`

pL,M(`,m)

=

n∑
m=`

m!

`!(m− `)!
· n!

m!(n−m)!
r`(1− r)m−`pm(1− p)n−m

=
n!r`

`!

n∑
m=`

1

(m− `)!(n−m)!
(1− r)m−`pm(1− p)n−mWe want this to

“look” binomial.

=
n!r`p`

`!(n− `)!

n∑
m=`

(n− `)!

(m− `)!(n−m)!
(1− r)m−`pm−`(1− p)n−m

=

(
n

`

)
r`p`

n∑
m=`

(
n− `

m− `

)
((1− r)p)m−`(1− p)n−m

=

(
n

`

)
(rp)`(1− rp)n−`︸ ︷︷ ︸
∼Binom(n,rp)

.

Example 8.6. Roll a die infinitely many times. Let N be the number of trials to get the first 6
and Y the number of 5’s in the first N trials. Compute E [Y].

Solution. Given N = n, Y ∼ Binom(n− 1, 15 ).
2 Then

E [Y | N = n] =
n− 1

5
=⇒ E [Y | N] =

N− 1

5
.

Hence,

E [Y] = E [E [Y | N]] = E

[
N− 1

5

]
=

1

5
E [N] −

1

5
= 1.

Solution with symmetry. Let Yi be the number of i’s in the first N trials for i = 1, 2, . . . , 5. We
want to compute E [Y5]. Notice that N = Y1 + · · ·+ Y5 + 1. Hence,

6 = E [N] = E [Y1] + · · ·+ E [Y5] + 1
(symm.)
=⇒ 5E [Y5] + 1 = 6 =⇒ E [Y5] = 1.

Proposition 8.7 (Wald’s identity). Let N be a non-negative integer random variable with
E [N] = λ. Let Xi be i.i.d. random variables that are independent of N with E [Xi] = µ.
Then E [X1 + · · ·+XN] = µλ.Linearity does not

apply here
because the sum

is taken to XN!
Proof.

E [X1 + · · ·+XN | N = n] = E [X1 + · · ·+Xn | N = n]

=

n∑
i=1

E [Xi | N = n]
(indep.)
=

n∑
i=1

E [Xi]

= µn

=⇒ E [X1 + · · ·+XN | N] = µN.

So
E [X1 + · · ·+XN] = E [E [X1 + · · ·+XN | N]] = E [µN] = µλ.

2Noticing this is subtle. It follows from the fact that the nth roll is already determined, and because we know that
none of the first n− 1 rolls are 6.
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Example 8.8. We cannot use Proposition 8.7 without independence. Consider Example 8.6
and let Ij indicate if the jth roll was 5. Then

Y = I1 + · · ·+ IN−1,

but
E [Y] 6= E [N− 1] · E

[
Ij
]
= 5 · 1

6
.

This is because Ij is not independent of N.

Example 8.9. Let X ∼ Poiss(λ) represent the number of customers in a store. Suppose we have
three types of coupons with probability p1, p2, p3. Let Xi be the number of customers with
coupon i (i = 1, 2, 3). Then if X = n,

(X1,X2,X3) ∼ Multinom(n, 3,p1,p2,p3).

Suppose we have k1, k2, k3 such that k1 + k2 + k3 = n. Then

P (X1 = k1,X2 = k2,X3 = k3) = P (X1 = k1,X2 = k2,X3 = k3 | X = n)P (X = n)

=
n!

k1!k2!k3!
p
k1
1 p

k2
2 p

k3
3

λn

n!
e−λ

=
λk1p

k1
1 λk2p

k2
2 λk3p

k3
3

k1!k2!k3!
e−λ(p1+p2+p3).

Hence, Xi are independent, and Xi ∼ Poiss(λpi). This is a Poisson process (see MATH623).

8.4. What does “best guess” mean?
We considered E [X | Y] as the “best guess” of X given Y. We will show this formally.

Proposition 8.10. Let X have E [X] = µ. Then

min
a

E
[
(X− a)2

]
= Var(X) = E

[
(X− µ)2

]
.

Proof.

E
[
(X− a)2

]
= E

[
((X− µ) − (a− µ))2

]
= E

[
(X− µ)2

]
+ (a− µ)2 − 2(a− µ)E [(X− µ)]

= Var(X) + (a− µ)2.

This attains its minimum at a = µ.

Theorem 8.11. Let E
[
X2
]

and E
[
Y2
]

be finite. Then

inf
h

E
[
(X− h(Y))2

]
= E

[
(X− E [X | Y])2

]
,

where the infimum is taken over all measurable functions.

We can think of E [X | Y] as the “projection” of X onto the function Y.

Proof.

E
[
(X− h(Y))2

]
= E

[
((X− E [X | Y]) − (h(Y) − E [X | Y]))2

]
= E

[
(X− E [X | Y])2

]
+ E

[
(h(Y) − E [X | Y])2

]
− E [(X− E [X | Y])(E [X | Y] − h(Y))]︸ ︷︷ ︸

=0

.By the general
definition of
conditional

expectation. 56
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The term E
[
(h(Y) − E [X | Y])2

]
is non-negative, so we have that

E
[
(X− h(Y))2

]
≥ E

[
(X− E [X | Y])2

]
, (8.1)

as desired. To show this inequality is strict, notice that

E
[
(h(Y) − E [X | Y])2

]
=

∫∞
−∞ (E [X | Y = y] − h(y))2fY(y) dy.

If h(y) 6= E [X | Y = y] for all y such that fY(y) > 0, then this term is positive, so the bound in
(8.1) becomes strict.
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