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1 Modules Pramana

1. Modules

September 7,
2023

1.1. Linear group actions
Definition 1.1
Let G be a group and S be a set. A group action G y S is a map from (g, s) ∈ G × S
to g · s ∈ S such that

1. idG ·s = s,

2. g · (h · s) = (gh) · s.

There is a bijection {
actions
Gy S

}
←→

{
homomorphisms
ρ : G→ Sym(S)

}
.

Definition 1.2
If V is a vector space, a group action Gy V is linear if each g ∈ G acts linearly on V ,
i.e.

g · (av + bw) = a(g · v) + b(g · w).

In this case, {
linear actions

Gy V

}
←→

{
homomorphisms
ρ : G→ GL(V )

}
,

since we can represent bijections V → V by matrices over V .

1.2. Modules
Definition (R-module)

Definition 1.3
A ring R acts on an abelian group M if for all s, s1, s2 ∈M and r, r1, r2 ∈ R,

1. 1R · s = s,

2. r1 · (r2 · s) = (r1r2) · s,

3. (r1 + r2) · s = r1 · s+ r2 · s and r · (s1 + s2) = r · s1 + r · s2.

Definition 1.4
An abelian group M with an R-action is called a (left) R-module.

We now cover some examples of R-modules.

Proposition 1.1
If M is an R-module, and S ⊆ R is a subring, then M can also be viewed as an S-
module.
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Proposition 1.2
If M is an abelian group, then HomAb−Gp(M,M), the set of group homomorphisms
from M to itself, is naturally a ring, where for all φ, ψ ∈ HomAb−Gp(M,M),

• φ+ ψ is defined by (φ+ ψ)(m) = φ(m) + ψ(m),

• φψ is defined by φψ = φ ◦ ψ.

Analogous to the correspondence for group actions and linear group actions, we have one
for R-module structures that come about from ring actions on an abelian group.

Proposition 1.3
If M is an abelian group, then{

left R-module
structures on M

}
←→

{
ring homomorphisms

ρ : G→ HomAb−Gp(M,M)

}
.

Proof. (←−) Given an R-module structure onM , i.e. an R-action onM , we define the
ring homomorphism ρ(r)(m) := r ·mExercise: check

this is a ring
homomorphism

.
(−→) Given a ring homomorphism ρ : R → HomAb−Gp(M,M), define r · m :=

ρ(r)(m).

Definition 1.5
A homomorphism (isomorphism) of R-modules M1 and M2 is a group homomorphism
(isomorphism) f : M1 →M2 where for all r ∈ R,m ∈M , r · f(m) = f(r ·m).

Let M is an R-module. The endomorphism ring is the set of R-module homomorphisms
from a module to itself. We denote it EndR(M) := HomR−Mod(M,M).

Proposition 1.4 (Endomorphism ring is a subring)
The endomorphism ring is a subring of HomAb−Gp(M,M).

Example 1.5 – If M = Rn is an R-module, then

EndR(M) ∼= Matn×n(R).

1.2.1. Module examples

September 12,
2023

Definition 1.6
Given a field k and a finite group G, k[G] is the group algebra of G, containing linear
sums of elements of G, i.e.

k[G] :=

∑
g∈G

cgg : cg ∈ k

 .
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1.2 Modules Pramana

Example 1.6 – Let Z/3 =
{
1, r, r2

}
. Then

R[Z/3] =
{
a+ br + cr2

} ∼= R[x]/(x3 − 1).

Proposition 1.7
We have the correspondence

{k[G]-modules} ←→ {k-vector spaces with a linear action of G} .

1.2.2. Algebras

Definition (k-algebras)
Definition 1.7
The center of a ring R is defined as

Z(R) := {r ∈ R : sr = rs, ∀s ∈ R} .

Definition 1.8
R is a k-algebra if Z(R) contains an isomorphic copy of k.

Example 1.8 (k-algebra examples) –
1. If R = k, then Z(R) = k.
2. If R = k[x], then k is contained in R as constant functions.
3. R = k[G] is an algebra because Z(R) ⊇ k · 1G.

Lemma 1.9 (Modules over k-algebras are k-vector spaces)
Let R be a k-algebra. If V is an R-module, then V is a k-vector space and there is
a ring homomorphism ρ : R → Endk(V ) that, if V is finite-dimensional, associates
elements of R with a matrix with entries in k.

Proof. Since k is a subring of R, V is a k-module, i.e. a k-vector space. Note that for
r ∈ R, c ∈ k and v, v1, v2 ∈ V , then r · (v1 + v2) = rv1 + rv2, and r(c · v) = (rc) · v So
ρ(r) : V → V : v 7→ r · v determines a linear map from V to itself, i.e. an element of
Endk(V ).

Lemma 1.10 (Homomorphisms (isomorphisms) between k-algebras)
Let R be a k-algebra. Let V1 and V2 be R-modules, which determine homomorphisms
ρi : R→ Endk(Vi).

Hom(V1, V2) ∼= {A : V1 → V2 | A is linear, Aρ1(r) = ρ2(r)A,∀r} ,
Isom(V1, V2) ∼= {A : V1 → V2 | A is linear, invertible, Aρ1(r) = ρ2(r)A,∀r} .
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1.3 Module constructions Pramana

Another way of saying the second statement is that V1 and V2 are isomorphic if and only
if the homomorphisms they correspond to are similar.

Example 1.11 (R[x]-module) – Let R = R[x]. Let M = R2, and let x be a matrix. We use this
to let polynomials p(x) ∈ R[x] act on R2. Then

EndR[x](M) = {A ∈ Mat2×2(R) : Ax = xA} .

For concreteness, suppose that x =

[
1 1
0 1

]
. Let A =

[
a b
c d

]
be an arbitrary matrix with real

entries. Then if A ∈ EndR[x](M),

Ax =

[
a a+ b
c c+ d

]
=

[
a+ c b+ d
c d

]
= xA,

which implies c = 0 and a = d, so A is of the form

A =

[
a b
0 a

]
.

1.2.3. Parallels in linear algebra

Definition 1.9
Given a module M , a subgroup M ′ ≤ M is a submodule if it is closed under the
R-action.

For example, a Z-module’s submodules are just subgroups. A k[x]-module’s submodules
are subspaces that are x-invariant.

Definition 1.10
Let S be some subset of an R-module M . The span of S is defined as the set of finite
linear combinations in R of elements of S, i.e.

span(S) = spanR(S) :=


∑
i

finite

ri · si | ri ∈ R

 .

A module is finitely generated if it has a finite spanning set.

Example 1.12 (Module that is infinitely generated) – Let R = C, and let M = C[x]. Then
M = spanC

{
1, x, x2, . . .

}

1.3. Module constructions
We will introduce different ways to construct modules from other modules.

1.3.1. Quotients

September 14,
2023

Definition 1.11
Let N be a submodule of M . Then the quotient module is the abelian group quotient
M/N where we define multiplication by elements of R as r · (m+N) := rm+N .
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Given a module homomorphism f : M1 →M2, we define the kernel of f as

ker f := {m ∈M1 | f(m) = 0} ,

and the image of f as
im f := {f(m) | m ∈M1} .

Lemma 1.13 (First module isomorphism theorem)
1. f is an isomorphism if and only if ker f = {0} and im f =M2.

2. im f ∼=M1/ ker f .

1.3.2. Direct sums

Definition 1.12
Let M1, . . . ,Mn be modules. The direct sum of these modules is

n⊕
i=1

Mi := {(m1, . . . ,mn) | mi ∈Mi} =M1 × · · · ×Mn.

For r ∈ R, we have r · (m1, . . . ,mn) := (rm1, . . . , rmn).

The reason for using⊕ instead of× as we do for groups is because it is the classical notation
used for vector spaces.

Lemma 1.14 (Condition for module sum to be direct sum)
Let M be a module with submodules A,B. Suppose that A ∩ B = {0} and A + B :=
{a+ b | a ∈ A, b ∈ B} =M . Then f : A⊕B →M : (a, b) 7→ a+ b is an isomorphism.

Proof. im f = A + B = M , so f is a surjection. If (a, b) ∈ ker f , then a + b = 0, i.e.
a = −b ∈ A ∩B. So, a = b = 0 and f is injective.

1.3.3. Free modules

Note that R can be viewed as an R-module.

Definition (Free modules)
Definition 1.13
A module M is free if it has a linearly independent spanning set.

The prototypical example of a free module we give is the free module of rank n
defined as Rn := R⊕ · · · ⊕R︸ ︷︷ ︸

n times

= {(r1, . . . , rn) | ri ∈ R} (compare this with the vector

space kn, where k is a field).

Let [S,R] denote the set of all functions from S to R where all but finitely many points
are sent to 0. Then f + r ∈ [S,R], and rf ∈ [S,R]. Then we have Rn = [{1, . . . , n} , R].
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1.4 Tensor products Pramana

Lemma 1.15
If M is a free module with a linearly independent spanning set S, then M ∼= [S,R].

Proof. Consider

Φ: [S,R]→M

f 7→
∑
s∈S

f(s) · s.

This is clearly an R-module homomorphism. imΦ = spanS = M . f ∈ kerΦ implies∑
s∈S f(s) · s = 0. By linear independence, f(s) = 0 for all s ∈ S, i.e. f ≡ 0.

1.4. Tensor products
1.4.1. Bilinear maps

Definition 1.14
Let A,B,C be R-modules. A function f : A⊕B → C is a bilinear map if

1. f(r · a, b) = rf(a, b)

2. f(a, r · b) = rf(a, b)

3. f(a1 + a2, b) = f(a1, b) + f(a2, b)

4. f(a, b1 + b2) = f(a, b1) + f(a, b2)

A prototypical example would be the dot product of two vectors, with A = B = Rn, C = R.

Example 1.16 – We showed in the class worksheet that all bilinear maps f : R2 ⊕R2 → R
are given by

f((r1, r2), (r3, r4)) =
[
r1 r2

] [a b
c d

] [
r3
r4

]
.

September 19,
2023

Let R be a commutative ring. We introduce this new construction, which will lead to the
tensor product. This will turn out to be the defining property, or as mathematicians like
to call it, the universal property of the tensor product. The nice thing about constructing
this universal property is that after the universality is proven, we won’t have to worry
about the details for the proof. We will be using commutative diagrams for many of these
proofs.

Lemma 1.17 (Universal property of the tensor product)
Let A, B, and C be R-modules. Given an R-module T and a bilinear map f : A⊕B →
T such that for all g : A⊕B → C, there is a unique homomorphism h : T → C such
that g = h ◦ f , i.e. the following diagram commutes

A⊕B T

C

f

g ∃!h

8
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Proof. Let F be the free module with basis A⊕B, i.e.

F =


∑

(a,b)∈A⊕B
finite

r(a,b)(a, b) | r(a,b) ∈ R

 .

Consider f̃ : A⊕B → F : (a, b) 7→ 1·(a, b). We want to show that the following diagram
commutes

F

A⊕B T
f

f̃

Let E be the submodule of F generated by

(x1 + x2, y)− (x1, y)− (x2, y)

(r · x, y)− r · (x, y)
(x, y1 + y2)− (x, y1)− (x, y2)

(x, r · y)− r · (x, y).

Let T = F/E, p : F → F/E be the projection of F into F/E, and let f = p◦ f̃ . Note that
f is bilinear. Suppose that g : A⊕B → C is bilinear. If h̃ : F → C is a homomorphism
such that g = h̃ ◦ f̃ , then h̃ sends (a, b) to g(a, b). By bilinearity, all elements of E are
in the kernel of h̃ so h̃ descends to a homomorphism h : F/E → C.

F

A⊕B F/E

C

p

h̃
f

f̃

g

∃!h

Lemma 1.18 (T is unique up to isomorphism)
Suppose that there also exists a bilinear map f ′ : A⊕B → T ′ satisfies the commuta-
tive diagram in Lemma 1.17. Then there exists an isomorphism j : T ′ → T such that
f = j ◦ f ′, i.e. the following diagram commutes:

T

A⊕B

T ′

f

f ′

j

Proof. Use the following diagram with the universal property twice on the outer

9



1.4 Tensor products Pramana

triangle to show that j2 ◦ j1 = j1 ◦ j2 = id.

T

A⊕B T ′

T

j1

j2◦j1

f

f

f ′

j2

We have shown that this module T exists and is well-defined, so we give it a name.

Definition 1.15
T is called the tensor product, denoted A⊗B. Given (a, b) ∈ A⊗B, a⊗ b = f(a, b).

Since f is bilinear, the same bilinearity properties apply to the tensors a⊗ b.
Note that if {a1, . . . , an} is a spanning set of A and {b1, . . . , bn} is a spanning set of B,

then {ai ⊗ bj}(i,j) is a spanning set of A⊗B. This is because if a =
∑

i riai and b =
∑

j rjbj ,
then

a⊗ b =

{∑
i

riai

}
⊗

∑
j

rjbj


=
∑
i,j

rirj(ai ⊗ bj).

Lemma 1.19 (Induced tensor product homomorphism)
If φ : A⊕B → C ⊕D is a homomorphism, then there is an induced homomorphism
Φ: A⊗B → C ⊗D.

Proof (sketch). Consider the following diagram:

A⊕B A⊗B

C ⊕D C ⊗D

φ

ι1

Φ

ι2

First we must show that the diagonal is bilinear. Then, Φ exists by the universal
property.

Lemma 1.20 (Tensored modules commute)
A⊗B ∼= B ⊗A.

Proof. With the isomorphism φ : A⊕B → B ⊕A : (a, b) 7→ (b, a), we use the previous
lemma to find the isomorphism Φ: A⊗B → B ⊗A.
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Lemma 1.21
R⊗A ∼= A.

Proof. Let g : R⊕A→ A : (r, a) 7→ r · a be a bilinear map. By the universal property,
the following diagram commutes

R⊕A R⊗A

A
g

f

h

We will prove h is an isomorphism. im(f) = im(h) = A since the diagram commutes.

ker(h) =

{∑
i

ri ⊗ ai |
∑
i

riai = 0

}

=

{∑
i

ri(1⊗ ai) |
∑
i

riai = 0

}

=

{∑
i

1⊗ riai |
∑
i

riai = 0

}

=

{
1⊗

(∑
i

⊗riai

)
|
∑
i

riai = 0

}
= {1⊗ 0}
= {0} .

Lemma 1.22
(A⊕B)⊗ C ∼= (A⊗ C)⊕ (B ⊗ C).

Remark 1.23. This means that the set of R-modules forms a commutative semiring using
⊕ for addition and ⊗ for multiplication.

Theorem 1.24 (Rank of free module is well-defined)
For a commutative ring R, if Rn ∼= Rm, then n = m.
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1.5 Simplicity and Schur’s lemma Pramana

Proof. Let p be a maximal ideal of R, so R/p = k is a field. Then

kn ∼= (R/p)n

∼= (R⊗R/p)⊕ · · · ⊕ (R⊗R/p)︸ ︷︷ ︸
n times

∼= Rn ⊗R/p
∼= Rm ⊗R/p
∼= (R⊗R/p)⊕ · · · ⊕ (R⊗R/p)︸ ︷︷ ︸

m times
∼= (R/p)m

∼= km.

So kn ∼= km as R-modules. But since the R-action factors through k = R/p action,
kn ∼= km as k-modules, i.e. vector spaces. So n = m.

This last lemma is mostly useful for the worksheet in class today.

Lemma 1.25
If A is an abelian group, A⊗ Z/n ∼= A/nA, where nA := {n · a | a ∈ A}.

Proposition 1.26
For R-modules A,B,C,September 21,

2023
Hom(A⊕B,C) ∼= Hom(A,C)⊕Hom(B,C),

Hom(A,B ⊕ C) ∼= Hom(A,B)⊕Hom(A,C).

By induction, for the sets of R-modules {Ai}, {Bj}.

Hom

⊕
i

Ai,
⊕
j

Bj

 ∼=⊕
i,j

Hom(Ai, Bj).

Proposition 1.27 (Vector space decomposition with W⊥)
Let k ⊆ R and let V be k-vector spaces. Consider 〈·, ·〉 : V × V → k, a symmetric
(〈v, w〉 = 〈w, v〉) bilinear map so that 〈v, v〉 > 0 if v 6= 0. Let W ⊆ V be a subspace. Let

W⊥ := {v ∈ V | ∀w ∈W, 〈v, w〉 = 0} .

Then V ∼=W ⊕W⊥.

1.5. Simplicity and Schur’s lemma
Our goal for this section is to classify all group homomorphisms G → GLn(R) (i.e. repre-
sentations) up to change of basis. We showed a correspondence between{

R[G]-module structure
on Rn

}
←→

{
ring homomorphisms
ϕ : R[G]→ Matn×n(R)

}
←→

{
group homomorphisms

ρ : G→ GLn(R)

}
12
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Moreover, we have the correspondence{
R[G]-module structure on Rn

up to isomorphism

}
←→

 ring homom. ϕ, where
ϕ,AϕA−1 define the

same structure, A ∈ GLn(R)

←→
 group homom. ρ

where ρ and AρA−1 define
isom. modules, ∀A ∈ GLn(R)


The takeaway from these correspondences is that if R is a k-algebra, then M1

∼=M2 if and
only if the R-actions agree up to a change of basis.

Lemma 1.28 (Module decomposition with W⊥)
Let k ⊆ R. Let V be a finite dimensional k[G]-module. If W is a submodule of V , then
there is a submodule U of V such that V ∼=W ⊕ U as modules.

Proof. Let 〈v, w〉 := v · w. Let (v, w) :=
∑

g∈G 〈gv, gw〉. This is a symmetric bilinear
map so that (v, v) > 0 if v 6= 0. So as vector spaces, V ∼=W ⊕W⊥.

We want to show that W⊥ is a G-invariant (or equivalently, W⊥ is a submodule).
Let w ∈W⊥, h ∈ G, v ∈W .

(h · w, v) =
∑
g∈G

〈ghw, gv〉

=
∑
g∈G

〈
(gh) · w, (gh)h−1 · v

〉
=
∑
γ∈G

〈
γ · w, γh−1 · v

〉
(γ = gh)

= (w, h−1 · v︸ ︷︷ ︸
∈W

)

= 0.

So h · w ∈W⊥.

The proof holds even if k ⊆ C (use the Hermitian product instead of the dot product).
In the homework we encountered simple modules:

Definition 1.16
A non-zero R-module M is simple is its only submodules are 0 and itself.

Corollary 1.29
If k ⊆ C, then any k[G]-module is isomorphic to the direct sum of simple modules.

Proof. Induct on dimV . If dimV = 1, V is automatically simple. For the inductive
step, if V is simple, we are done. Otherwise, it contains a submodule A, and hence,
we can write V = A⊕ B by Lemma 1.28, where dimA,dimB < dimV . By induction,
we can decompose A and B.

Definition 1.17
A division algebra over k is a ring whose center contains k, and so every 0 6= d ∈ D is
invertible.

13



1.5 Simplicity and Schur’s lemma Pramana

Lemma 1.30 (Schur’s lemma)
Let S and T be simple non-isomorphic k[G]-modules. Then

1. Homk[G](S, T ) = 0,

2. Endk[G](S) = Homk[G](S, S) is a division algebra over k.

Proof. Let f : S → T be a homomorphism. ker f is a submodule of S, so ker f = S
(then f is zero) or ker f = 0 (then f is injective). In the second case, im f 6= 0, so
im f = T , so f is surjective (hence an isomorphism). So if f : S → S is non-zero, then
it is invertible.

Note that if f : C → C for some c ∈ k, the f is central since all homomorphisms are k-linear
maps.

Corollary 1.31 (Finite dimensional algebras over R and C)
The only finite dimensional division algebras over R are R, C, and H. The only finite
dimensional division algebra over C is C.

Lemma 1.32
Let R be a k-algebra, and let V be a finite dimensional R-module. Then as k-vector
spaces, V ∼= HomR(R, V ).

Proof. Given v ∈ V , consider φv : R→ V : r 7→ r · v. Then let

Φ: V → HomR(R, V )

: v 7→ φv.

This is a k-linear map. kerΦ = {v | φv ≡ 0} Since φv(1) = v, v = 0, and kerΦ = {0}.
Suppose φ : R→ V is an R-module homomorphism.

φ(r) = φ(r · 1) = r · φ(1).

So φ = φφ(1), so im(Φ) = HomR(R, V ).

Theorem 1.33 (Calculations from Schur’s lemma)
Let k[G] =

⊕
i S

ni
i (which we can do by Corollary 1.29), where Si is simple, and Si 6∼= Sj

if i 6= j. Let ei := dimEndk[G](Si). Then the following hold

1. For all simple modules S, S ∼= Si for some i,

2. niei = dimSi,

3. |G| =
∑

i
(dimSi)

2

ei
.

14
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Proof. (1) Let R = k[G]. Let S be a simple module.

S ∼= HomR(R,S)

∼= HomR

(⊕
i

Sni
i , S

)
∼=
⊕
R

HomR(Si, S)
ni .

By Lemma 1.30, S ∼= Si for some i.
(2) We have

dimSi = dim
⊕
j

HomR(Sj , Si)
nj = dimHomR(Sj , Si)

ni = eini.

(3)

|G| = dim k[G]

= dimHomR(k[G], k[G])

= dimHomR

(⊕
i

Sni
i ,
⊕
i

Sni
i

)

= dim

⊕
i,j

HomR(Si, Sj)
ninj


= dim

(⊕
i

HomR(Si, Si)
n2
i

)
=
∑
i

n2i ei

=
∑
i

(niei)
2

ei

=
∑
i

(dimSi)
2

ei
.

This theorem will be very useful for decomposing k[G]-modules. (1) tells us that we can
decompose k[G]-modules decomposes in to a direct sum of its simple modules, (2) gives us
a way to find the dimensions of the endomorphism algebras, and (3) lets us verify that we
have found all simple modules for a k[G]-module.

Corollary 1.34
The only simple C[G]-modules when G ∼= Z/n are 1-dimensional.

Proof. Consider ρk : Z/n→ GL1(C) ∼= C× : 1 7→ ζkn, where ζn = exp
(
2π
n

)
. This gives n

distinct C[G]-modules. n = |G| = 12+ · · ·+12 = dim(S1⊕· · ·⊕Sn), where Sk is simple
module corresponding to ρk.

Corollary 1.35
Every element of finite order in GLn(C) is diagonalizable.

15
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Proof. Suppose A ∈ GLn(C) has finite orderm. Then ρ : Z/m→ GLn(C) by k 7→ Ak is
a group homomorphism, so we have a corresponding C[Z/m]-module structure on Cn,
where x acts on v ∈ Cn by x·v = Av. By the previous example, all C[Z/m]-modules are
1-dimensional, so we can decompose Cn into a direct sum of 1-dimensional modules
Si, Cn ∼=

⊕n
i=1 Si. To find out how x ∈ Z/m acts on

⊕n
i=1 Si, we know that

x · (s1, . . . , sn) = (ρ1(x) · s1, . . . , ρn(x) · sn),

where ρi : Z/m → C× is the homomorphism by which x acts on each Si. Recall that
A is diagonalizable if there exists invertible matrix M and diagonal matrix D such
that

D =M−1AM.

Since the action (ρ1, . . . , ρn) and ρ define isomorphic modules, we can find a matrix
M such that ρ1(x) . . .

ρn(x)

 =M−1AM,

where the LHS is the matrix corresponding to how (ρ1, . . . , ρn) acts on
⊕n

i=1 Si.

Since tr(A−1BA) = tr(B) for all matricesA,B, we have the following corollary.

Corollary 1.36 (Equality between traces of isomorphic modules)
September 26,

2023
If ρ1 and ρ2 determine isomorphic R[G]-modules, then tr(ρ1(g)) = tr(ρ2(g)).

Example 1.37 (Dihedral group modules) – Let G =
〈
r, t | r2 = tn = (tr)2 = 1

〉
be the dihedral

group of order 2n. The simple C[G]-modules are the following:
1. 〈r〉 E G and G/ 〈r〉 ∼= Z/2, so we have two 1-dimensional modules:

ρtriv : G → C×

: g 7→ 1,

ρsgn : G → C×

: ratb 7→ (−1)b.

2. Consider the 2-dimensional C[G] modules for 1 ≤ k ≤ n−1
2

:

ρk : G → GL2(R)

r 7→ rot 2πk
n

=

[
cos

(
2πk
n

)
− sin

(
2πk
n

)
sin

(
2πk
n

)
cos

(
2πk
n

) ]
t 7→

[
1 0
0 −1

]
.

Since tr(ρk(r)) = 2 cos
(
2πk
n

)
, these modules are not isomorphic.

Let’s compare |G| to
∑

i(dimSi)
2. We have

(1)2 + (1)2 +

(
n− 1

2

)
· 22 = 2 + 2n− 2 = 2n.

Since this sum is |G|, we have found all the simple modules.

16



1.5 Simplicity and Schur’s lemma Pramana

Example 1.38 (HW3 Problem 4.a) – Let G = Z/n. Find all simple R[G]-modules.
Simple R[G]-modules correspond to group homomorphisms ρ : G → GLm(R), where m ∈ N.

• For m = 1, ρtriv : c 7→ 1 for all c ∈ Z/n. If n is even then we have the map ρsgn : c 7→ (−1)c.
Since niei = dimSi = 1, the endomorphism algebras have dimension 1.

• For m = 2, we have the modules defined on the generator 1 ∈ Z/n

ρk : 1 7→ rot 2πk
n

,

where rotθ is a rotation matrix in GL2(R) by θ. If n is odd, we let 1 ≤ k ≤ n−1
2

, if n is
even, we let 1 ≤ k ≤ n−2

2
.

Since tr(ρk(1)) = 2 cos
(
2πk
n

)
are not equal for any two k, none of these modules are

isomorphic.
rot 2π

2n
is not a scalar multiple of the other rotation matrices, and

rot 2π
2n

rot 2πk
n

= rot 2πk
n

rot 2π
2n

,

so the dimension of the endomorphism algebra is at least 2. Since niei = dimSi = 2 for
the two-dimensional simple modules Si, ei = 2.

At this point, we stop, since by looking at the sum,

submodule dimension n odd n even
1 ρtriv ρtriv, ρsgn
2 {ρk}1≤k≤n−1

2
{ρk}1≤k≤n−2

2

comparison with |Z/n| = n 12 + n−1
2

(
22

2

)
= n 12 + 12 + n−2

2

(
22

2

)
= n

Thus, we have found all simple R[Z/n]-modules.

For computing 1-dimensional representations (i.e. 1-dimensional (simple) k[G]-modules)
we have a trick. Notice that ρ : G→ GL1(k) = k× is a map from the group into an abelian
group. Therefore, it must factor through the abelianization of G, G/[G,G]. The number of
representations precisely corresponds with the order of G/[G,G].

September 26,
2023

The following generalizes the last step in the proof of Corollary 1.35.

Corollary 1.39
Suppose V and V1, . . . , Vn are R[G] modules determined by ρ and ρ1, . . . , ρn. Then if
V ∼= V1 ⊕ · · · ⊕ Vn, then up to change of basis,

ρ(g) =

ρ1(g) . . .

ρn(g)

ρ1(g) are block
matrices.

The simplest case of a decomposition of a k[G] module is with k = C.

Theorem 1.40
C[G] ∼= SdimS1

1 ⊕· · ·⊕SdimSn
n , where each simple C[G] module corresponds to a unique

Si.

We proved the following theorem on the homework, which is a generalization of Corol-
lary 1.29.
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1.6 Extending linear algebra to Rn Pramana

Theorem 1.41 (Maschke’s theorem)
Let k be a field. Let V be a finite-dimensional k-vector space. Suppose that V is a
k[G]-module where G is a finite group, and |G| is invertible in k. Then V is a direct
sum of simple k[G]-modules.

1.6. Extending linear algebra to Rn

If R is a commutative ring, we’ve seen that Rn is “sometimes like a vector space.” For
example, HomR(R

n, Rn) ∼= Matn×n(R). The goal of this section will be to define a “deter-
minant” on homomorphisms between free R-modules.

1.6.1. Multilinear maps

Definition 1.18
Let (Mi) be R-modules and let N be an R-module. A map f : M1 ⊕ · · · ⊕Mn → N is
multilinear if it is linear in each entry, i.e.

f(m1, . . . , r ·mi +m′
i, . . . ,mn) = r · f(m1, . . . ,mi, . . . ,mn) + f(m1, . . . ,m

′
i, . . . ,mn).

The determinant det : V ⊕n → kV ⊕n =
V ⊕ · · · ⊕ V︸ ︷︷ ︸

n times

is multilinear. Moreover, the determinant is alternating,
i.e. det(v1, . . . , vn) = 0 if vi = vj for some i 6= j.

Theorem 1.42 (Universal property of tensor product for multilinear maps)
For any multilinear map g :

⊕n
i=1Mi → N , there exists a homomorphism

h :
⊗n

i=1Mi → N such that the following diagram commutes:

⊕n
i=1Mi

⊗n
i=1Mi

N

f

g ∃!h

Proof. We prove this by induction on n. n = 2 is just the case with the regular tensor
product. For each m1 ∈M1, there exists a multilinear map

gm1
:

n⊕
i=2

Mi → N

: (m2, . . . ,mn) 7→ g(m1, . . . ,mn).

We can think of this as the map corresponding to the diagram⊕n
i=2Mi

⊗n
i=2Mi

N

gm1 hm1

18



1.6 Extending linear algebra to Rn Pramana

We then can add M1 to get the diagram:

M1 ⊕ (
⊕n

i=2Mi) M1 ⊕ (
⊗n

i=2Mi)
⊗n

i=1Mi

N
g

b
∃!h

If we construct the bilinear map b : (m1,m2 ⊗ · · · ⊗ mn) 7→ hm1
(m2 ⊗ · · · ⊗ mn) =

f(m1, . . . ,mn), by the universal property, we find the map h.

September 28,
2023

Suppose Rn ∼= M with span e1, . . . , en. Then M ⊗ M is free of rank n2 with basis
{ei ⊗ ej}i,j . Then M⊗k :=M ⊗ · · · ⊗M︸ ︷︷ ︸

k times

is free of rank nk with basis {ei1 ⊗ · · · ein}.

By Theorem 1.42, there is a bijection from the set of multilinear maps M⊕n → N and
HomR(M

⊗k, N).

1.6.2. Exterior products

Tensor products were what every bilinear map filtered through. Exterior products will be
what every alternating bilinear map will filter through.

Definition 1.19
A multilinear map f : M⊕k → N is alternating if f(m1, . . . ,mk) = 0 for mi = mj , i 6= j.

For notation, given σ ∈ Sym(k) and v = (m1, . . . ,mn), we let vσ := (mσ(1), . . . ,mσ(n)).
Recall that the sign homomorphism sgn: Sym(k) → {±1} such that sgn(σ) = (−1)`, where
` is the number of transpositions in σ.

Lemma 1.43
Let v ∈ M⊕n, let σ ∈ Sym(k) and f : M⊕n → N and alternating, then f(vσ) =
sgn(σ)f(v).

Proof. We can work out the case where σ = (12):

0 = f(v1 + v2, v1 + v2, . . . , vk)

= f(v1, v1 + v2, . . . , vk) + f(v2, v1 + v2, . . . , vk)

= f(v1, v1, . . . ) + f(v1, v2, . . . ) + f(v2, v1, . . . ) + f(v2, v2, . . . )

= f(v1, v2, . . . ) + f(v2, v1, . . . ).

Since σ ∈ Sym(k) is a product of transpositions, we can generalize this further.

Definition 1.20
The kth exterior product

∧k
M is the quotient of M⊗n by the submodule I generated

by the subset of {m1 ⊗ · · · ⊗mk} where mi = mj for some i 6= j.
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1.6 Extending linear algebra to Rn Pramana

Theorem 1.44 (Universal product of exterior product)
Consider f : M⊕k → M⊗k → M⊗k/I by (m1, . . . ,mn) 7→ m1 ⊗ · · · ⊗mn 7→ m1 ⊗ · · · ⊗
mn + I. This is an alternating map. Moreover, if g : M⊕k → N is an alternating
bilinear map, then ∃!h :

∧k
M → N , a module homomorphism, such that g = h ◦ f ,

i.e. the following diagram commutes:

M⊕k
∧k

M

N

f

g ∃!h

Proof.
M⊕k M⊗k M⊗k/I

N

f

g ∃!h̃
h

Since g is alternating, any element of the form m1 ⊗ · · · ⊗mn, where mi = mj for
some i 6= j is in the kernel of h. So ker h̃ ⊇ I.

Denote f(m1, . . . ,mk) =: m1 ∧ · · · ∧mk. The ∧ symbol stands for wedge.
Remark 1.45. e1 ⊗ e2 6= e2 ⊗ e1 sometimes, but e1 ∧ e2 = −e2 ∧ e1 always.

Once again, letRn ∼=M = spanR(e1, . . . , en). As withM⊗k,
∧k

M is spanned by {ei1 ∧ · · · ∧ ein},
where 1 ≤ i1 < · · · < ik ≤ n. Let this set be B.

Theorem 1.46 (Rank of exterior product)∧k
M is a free module of rank

(
n
k

)
with basis B.

Proof. Let

ϕ : M⊕k →M⊗k

: (m1, . . . ,mk) 7→
∑

σ∈Sym(k)

sgn(σ)mσ(1) ⊗ · · · ⊗mσ(k).

ϕ is multilinear, since it is a sum of multilinear maps (by using f : M⊕k → M⊗k to
define elements of M⊗k).

We claim ϕ is alternating. Let v = (m1, . . . ,mk) such that m1 = m2. Let {τi} be a
collection of permutations so that σ ∈ Sym(k) is either σ = τi or σ = τ1(12).

φ(v) =

n!/2∑
i=1

sgn(τi)f(v
τ
i ) + sgn(τi(12))f(v

τi(12))

=

n!/2∑
i=1

sgn(τi)f(v
τ
i )− sgn(τi)f(v

τi)

= 0.
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By the universal property, we have

h :
∧k
→M⊗k

: m1 ∧ · · · ∧mk 7→
∑

σ∈Sym(k)

sgn(σ)mσ(1) ⊗ · · · ⊗mσ(k).

Now we show that B is a linearly independent set. Since B′ := {ei1 ⊗ eik} is linearly
independent inM⊗k, ifB were not linearly independent, then there would be a linear
relation ∑

1≤i1<···<ik≤n

const · ei1 ∧ · · · ∧ eik

that was sent under ϕ to a nontrivial linear relation between B′, a contradiction.

Definition 1.21
Let A : M →M be an R-module homomorphism.

∧k
A is the module homomorphism

such that the following diagram commutes:

M⊕k
∧k

M

M⊕k
∧k

M

A⊕k

f

∧k A

f

Where f : M⊕k →
∧k

M is the map (m1, . . . ,mk) 7→ m1 ∧ · · · ∧mk.

If M ∼= Rn, then
∧k

M is free of rank 1. If M = spanR(e1, . . . , en), then
∧n

M = spanR(e1 ∧
· · · ∧ en). If A ∈ Matn×n(R) ∼= HomR(R

n, Rn), so
∧n

A :
∧n

M →
∧n

M . Any R-module
endomorphism f is given by f(x) = r ·x for some r ∈ R. So

∧n
A is multiplication by r ∈ R.

The value is defined to be the determinant of the R-module homomorphism A, detA := r.

1.6.3. Properties of determinants

October 3, 2023 Lemma 1.47
Let M ∼= Rn with basis e1, . . . , en. Let A : M → M be an R-module homomorphism.
Let A(e1) =

∑n
i=1 ai,jej , where ai,j ∈ R.

Then
detA =

∑
σ∈Sym(n)

sgn(σ)a1,σ(1) · · · an,σ(n).

Remark 1.48. This is a very inefficient way of calculating the determinant, needing on
the order of n! · n calculations.
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Proof.

(
∧n

A)(e1 ∧ · · · ∧ en) = A(e1) ∧ · · · ∧A(en)

= (a1,1e1 + c · · ·+ a1,nen) ∧ (a2,1e1 + c · · ·+ a2,nen) ∧ · · ·

=
∑

f : {1,...,n}→{1,...,n}

(a1,f(1) · · · an,f(n))ef(1) ∧ · · · ∧ ef(n)f must be a
bijection for the

wedge to be
nonzero =

∑
σ∈Sym(n)

(a1,σ(1) · · · an,σ(n))eσ(1) ∧ · · · ∧ eσ(n)

=

 ∑
σ∈Sym(n)

sgn(σ)a1,σ(1) · · · an,σ(n)

 e1 ∧ · · · ∧ en
= detA.

Lemma 1.49
Let M ∼= Rn. Let A,B : M → M be an R-module homomorphism Then detAB =
detAdetB.

Proof. Let (e1, . . . , en) be a basis.

(
∧n

AB)(e1 ∧ · · · en) = A(B(e1)) ∧ · · ·A(B(en))

= (
∧n

A)(B(e1) ∧ · · · ∧B(en))

= detA(Be1 ∧ · · ·Ben)

= detA · (
∧n

B)(e1 ∧ · · · ∧ en)

= detAdetBe1 ∧ · · · ∧ en.

1.6.4. Principal ideal domains

Definition 1.22
R is a principal ideal domain (PID) if the following hold:

1. if x, y ∈ R− {0}, then xy 6= 0 (i.e. a PID is an integral domain)

2. if I ⊆ R is an ideal, then there is x ∈ R such that I = (x), the ideal generated
by x.

Example 1.50 – Z and k[x] are PIDs. So is R(p), where R is a PID and p is prime.

Let R be a PID.

Definition 1.23
Given x, y ∈ R, we let (x, y) := {r1x+ r2y | r1r2 ∈ R} = (e). The element e is called
the greatest common divisor of x and y.

If e is invertible, then x and y are called coprime.
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Lemma 1.51
If (e) = (f), e = cf , where c is invertible.

Proof. Since e is in the ideal generated by f and vice versa, e = c1f = c1(c2e), so
(1− c1c2)e = 0. Either e is zero, in which case c can be 1, or e is not zero, so 1 = c1c2,
so c = c1 is invertible.

Lemma 1.52
If x, y ∈ R and (e) = (x, y), then there are coprime elements a and b so that ax+by = e.

Proof. Since (x, y) = (e), there exist a, b ∈ R s.t. ax + by = e. Let f ∈ R be any
common factor of a and b. Suppose a = fa′ and b = fb′ for a′, b′ ∈ R. Then e =
ax+ by = f(a′x+ b′y). Then (e) ⊆ (a′x+ b′y) ⊆ (x, y) = (e). Then (e) = (a′x+ b′y) so
by the previous lemma, f is invertible.

1.6.5. Smith normal form

Definition 1.24
Let M ∼= Rn. Let v1, . . . , vn ∈M . A quasi-elementary operation on (v1, . . . , vn) is

(v1, . . . , vi, . . . , vj . . . , vn)→ (v1, . . . , avi + bvj , . . . , cvi + dvj . . . , vn)

where a, b, d, c ∈ R and ad− bc is invertible.

We can represent q.e. operations as

A→



1
. . .

a b
. . .

c d
. . .

1


A.

Note that q.e. operations are invertible, since
[
a b
c d

]−1

= (ad − bc)−1

[
d −b
−c a

]
. The

inverse of this matrix is similar to the case of the 2× 2 matrix. The operation also has the
same determinant as its transpose.

Example 1.53 (Comparison with elementary operations in linear algebra) – The elementary
operations we know in linear algebra can be turned into quasi-elementary operations.

1.
[
a b
c d

]
=

[
0 1
1 0

]
swaps vi and vj

2.
[
a b
c d

]
=

[
1 1
0 1

]
sends vi → vi + vj

3.
[
a b
c d

]
=

[
a 0
0 1

]
sends vi → avi, where a is invertible.
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Definition 1.25
A quasi-elementary row (column) operation on A ∈ Matn×n(R) is given by multipli-
cation on the left (right) by an invertible matrix.

Proposition 1.54
Let A ∈ Matn×n(R). Then there are S,D, T ∈ Matn×n(R) such that A = SDT , where
S, T are invertible matrices and D is a diagonal matrix.

Proof. It suffices to show that A can be diagonalized with quasi-elementary row/col-
umn operations. Induct on n. The n = 1 base case is clear. Suppose n > 1 and
A 6= 0.

By swapping rows and columns, suppose a1,1 6= 0 (where ai,j entry of A in row i
and column j).
Claim 1.1. If a1,1 | ai,1 and a1,1 | a1,i for all i, then A is diagonalizable using quasi-
elementary row/column operations.

Proof. Subtract the appropriate multiple row 1 (resp. col 1) from all subsequent
rows (resp. cols) to make a1,i = ai,1 = 0 for all i > 1. After this, our matrix has
the form 

a1,1 0 · · · 0
0
...
0

A′


We can then apply induction to A′ ∈ Matn−1×n−1(R). �

If a1,1 6= 0, then using quasi-elementary row/column operations we can diagonalize
A.

Since R is a PID, it is a unique factorization domain (UFD). So if r ∈ R−{0}, then

r = upe11 · · · penn ,

where u invertible and pi prime. Define δ(r) = e1 + · · · + en. Induct on δ(a1,1). If
δ(a1,1) = 0, then a1,1 is invertible, so a1,1 | ai,1 and a1,1 | a1,i. By the previous lemma,
we are done.

If a1,1 | ai,1 and a1,1 | a1,i for all i > 1, we are done by the last lemma. For concrete-
ness, suppose that a1,1 - a2,1. Let (a1,1, a2,1) = (e). This implies δ(e) < δ(a1,1). There
are elements a, b ∈ R s.t. aa1,1 + ba1,2 = e, and so a, b are coprime, i.e. (a, b) = (1).
There are elements c, d ∈ R s.t. ad− bc = 1 by the definition of GCD. Let v1 and v2 be
the first and second row of the matrix respectively. Use q.e. operations

(v1, . . . , vn)→ (av1 + bv2, cv1 + dv2, v3, . . . , vn).

So after this operation, our matrix has e in the 1st row and 1st column. But δ(e) <
δ(a1,1), so the new matrix can be diagonalized by q.e. row/column operations by in-
duction.

October 5, 2023 We proved the following in the worksheet in class yesterday:
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Theorem 1.55 (Smith normal form)
We can write A ∈ Matn×n(R) as A = SDT , where

D =

d1 . . .

dn

 ,
and di | di+1 for all i.

This is called the Smith normal form (SNF). The set (d1, . . . , dn) are called the invariant
factors. We will show that A uniquely determines its invariant factors up to multiplying
each by an invertible element.

We introduce multi-index notation to make writing elements in exterior products easier.
Let (e1, . . . , en) be a basis forM ∼= Rn. Let I = 1 ≤ i1 < · · · < ek ≤ n. Then eI := ei1∧· · ·∧eik .

1.6.6. Minors

Lemma 1.56
For any matrix A ∈ Matn×n(R), detA = detAT .

Proof. By Theorem 1.55, we can write A = S1 · · ·Sn, where Si is either q.e. or diago-
nal. For q.e. and diagonal matrices the claim holds. Since

detA = detS1 · · · detSn = detST
n · · · detST

1 = det(ST
n · · ·ST

1 ) = detAT .

Definition 1.26
Let A ∈ Matn×n(R). Let I, J ⊆ {1, . . . , n} with |I| = |J | = k. The minor AI,J is the
determinant of the submatrix of A using only columns with indices in I and rows
with indices in J .

Lemma 1.57
Let A ∈ Matn×n(R) and M ∼= Rn. Let I ⊆ {1, . . . , n} with |I| = k. Then(∧k

A

)
(eI) =

∑
J⊆{1,...,n}

|J|=k

AI,J · eJ .

Proof (sketch). Choose I = {1, . . . , k} for example. Let

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 .
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We will need to show(∧k
A

)
(e1 ∧ · · · ∧ ek) = (a1,1e1 + c . . . an,1en) ∧ · · · ∧ (a1,ke1 + · · ·+ an,ken)

= (AI,I)e1 ∧ · · · ∧ ek + other terms.

Definition 1.27
The kth fitting ideal Ik(A) of a matrix A ∈ Matn×n(R), is the ideal generated by AI,J

for all I, J ⊆ {1, . . . , n} such that |I| = |J | = k.

Example 1.58 –

1. For A =

[
1 2
3 4

]
,

• I1(A) = (1, 2, 3, 4) = (1) = Z
• I2(A) = (detA) = (−2) = 2Z.

2. For A = diag(1, 2, 4) (i.e. a diagonal matrix with entries 1, 2, 4),
• I1(A) = Z
• I2(A) = (2, 8, 4) = (2)

• I3(A) = (8)

These to not show up in linear algebra because there are no interesting ideals in a field k.

Lemma 1.59
If S is invertible and A ∈ Matn×n(R), and k is a positive integer, then

Ik(SA) = Ik(A) = Ik(AS).

Proof. Since any invertible matrix is a product of q.e. matrices, we can assume with-
out loss of generality, that S is q.e. In particular, ST is q.e. too. It suffices to show
that if S is q.e., then Ik(SA) ⊆ Ik(A).

If this holds, then Ik(A) = Ik(S
−1SA) ⊆ Ik(SA) ⊆ Ik(A), i.e. these ideals are the

same. Moreover, the k × k submatrices of A and AT have the same determinant, so
Ik(A

T ) = Ik(A). Thus, Ik(AS) = Ik(S
TAT ) = Ik(A

T ) = Ik(A). So all we have to do is
prove the containment in the first part.

Let I ⊆ {1, . . . , n} such that |I| = k. By applying the previous lemma twice,∑
J⊆{1,...,n}

|J|=k

(SA)I,J · eJ =

(∧k
SA

)
(eI) =

(∧k
S

)(∧k
A

)
(eI)

=

(∧k
S

) ∑
J⊆{1,...,n}

|J|=k

AI,JeJ

=
∑

J,L⊆{1,...,n}
|L|=|J|=k

AI,JSI,LeL.
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Hence,

(SA)I,J =
∑

J,L⊆{1,...,n}
|J|=|L|=k

∈Ik(A)︷︸︸︷
AI,J

∈R︷︸︸︷
SI,L ∈ Ik(A).

Theorem 1.60 (Unqiueness of Smith normal form)
The invariant factors di | di+1 from Theorem 1.55 are unique for all i up to multipli-
cation by an invertible element.

Proof. We need to show that A uniquely determines di. By the previous lemma, if
A = SDT , then for all k, Ik(A) = Ik(D). Then

I1(D) = (d1), I2(D) = (d1d2), I3(D) = (d1d2d3), . . .

So given A, let ek ∈ R such that Ik(A) = (ek). Then ek−1 | ek for all k and let dk be the
element such that ek = dkek−1.

1.7. Classification of modules over a PID

Theorem 1.61
Let R be a commutative ring. Every submodule of a finitely generated free R-module
is free if and only if R is a PID.

Proof. ( =⇒ ) Every submodule of R is free, so if 0 6= x ∈ R, then R · x is a free
submodule. So r · x 6= 0 if r 6= 0 since this would be a nontrivial linear relation. So R
has no zero divisors.

Since R is an integral domain, we show on the homework that any free submodule
has rank ≤ 1. So for I ⊆ R, I is free by assumption, and I ∼= R. Hence, it is principal.

(⇐= ) We want to show that every submodule of Rn is free. We induct on n.
For the base case n = 1: R1 = R, this follows from the definition of PID.
For the inductive step, let M ⊆ Rn be a submodule. Let

π : Rn → Rn−1

: (x1, . . . , xn) 7→ (x2, . . . , xn).

So π(M) ⊆ Rn−1. So π(M) has a basis e1 . . . , em. Let e1, . . . , em be elements of M so
that π(ei) = ei. Note that kerπ = R ⊕ 0 · · · ⊕ 0. So kerπ ∩M ⊆ R ⊕ 0 ⊕ · · · ⊕ 0. If
kerπ∩M = {0}, then π : M → π(M) is an isomorphism. By the induction hypothesis,
this shows M is free. Otherwise, kerπ ∩M is generated by a nonzero element em+1.
We claim that this element can be added to form a basis for M .
Claim 1.2. M = span(e1, . . . , em+1).
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Proof. Let m ∈M . Let π(m) =
∑m

i=1 riei for ri ∈ R. Then

m− r1e1 − · · · − rmem ∈ kerπ ∩M.

So for some rm+1∈R,

m− r1e1 − · · · − rmem = rm+1em+1. �

Claim 1.3. (e1, . . . , em+1) are linearly independent.

Proof. Suppose r1e1 + · · ·+ rm+1em+1 = 0 for some r1, . . . , rm+1 ∈ R. Then

π(r1e1 + · · ·+ rm+1em+1) = r1e1 + · · ·+ rmem.

Since (e1, . . . , em) are linearly independent, ri = 1 for 1 ≤ i ≤ m. So rm+1 ·
em+1 = 0. But em+1 = (r, 0, . . . , 0). Since R is a PID, rm+1em+1 = 0 if and only if
rm+1r = 0, so rm+1 = 0. �

October 10, 2023 Our goal is to classify all finitely generated modules over a PID R. Suppose M is a
finitely generated R-module with generating set S := {v1, . . . , vn}. Hence, we have a map

φS : R
n →M

: (r1, . . . , rn) 7→ r1v1 + · · ·+ rnvn.

This is a module homomorphism, so kerφS is a submodule, hence, by Theorem 1.61, a free
module of rank k ≤ n.

Lemma 1.62
The invariant factors of S do not depend on the choice of a basis for kerφS .

Proof. Suppose that {w1, . . . , wk} and {w′
1, . . . , w

′
k} are two bases for kerφS . Equiva-

lently, there are isomorphisms ψ : Rk → kerφS and ψ′ : Rk → kerφS where wi = ψ(ei)
and w′

i = ψ′(ei). Hence,
ψ−1 ◦ ψ′ : Rk → Rk

is an invertible linear map with matrix representation T . If ψ and ψ′ are represented
by the matrices A and A′ respectively,

A′ = AT.

The invariant factors are determined by the fitting ideals. Since T is invertible, by
Lemma 1.59, Ik(A′) = Ik(AT ) = Ik(A) for all k.

Lemma 1.63 (Fitting’s lemma)
Suppose S = {v1, . . . , vn} is a generating set of M . Let S′ = S ∪ {vn+1}, where vn+1 ∈
M . Then the invariant factors of S and S′ are the same. Moreover, the invariant
factors of M are independent of S.
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Proof. Let A be a matrix whose rows form a basis for kerφS . Write

vn+1 =

n∑
i=1

rivi, r := (r1, . . . , rn).

A basis for φS′ can be written as the rows of the matrix

A′ :=

 0

r 1

A

.
We can perform q.e. column operations to turn this into

[
A 0
0 1

]
. So there is an

invertible matrix T ′ so that A′T ′ =

[
A 0
0 1

]
. By Theorem 1.55, there are invertible

matrices P and T so that

PA′T ′T =


d1

. . .

dn
1

 ,
where d1, . . . , dn are the invariant factors of A.

For the second claim, we suppose {v1, . . . , vn} and {v′1, . . . , v′m} are two generat-
ing sets. Note that invariant factors of {v1, . . . , vn} and {v1, . . . , vn, v′1} are the same.
Repeating this procedure, {v1, . . . , vn} and {v1, . . . , vn, v′1, . . . , v′n} have the same in-
variant factors. We can do this procedure in the opposite direction to get {v′1, . . . , v′n}
and {v1, . . . , vn, v′1, . . . , v′n} have the same invariant factors. Hence, {v1, . . . , vn} and
{v′1, . . . , v′n} have the same invariant factors.

Theorem 1.64 (Classification of finitely generated modules over PIDs)
If M is a finitely generated R-module, where R is a PID, then there is a unique list of
non-invertible elements d1 | d2 | · · · | dn so that

M ∼=
⊕
i

R/(di).

Proof. Let (d1, . . . , dn) be the invariant factors of the module M (this is well-defined
because of the previous two lemmas). Let B be any generating set of size m for M .
Let

A : Rk → Rm

be a linear injection whose image is kerφB . There are invertible matrices S and T
such that

A = SDT,
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where

D =



1
. . .

1
d1

. . .

dn


Let K be the row span of D. Note that

S−1 : Rm → Rm,

which sends kerφB to K. Therefore

M ∼= Rm/ kerφB ∼= Rm/K ∼=
⊕
i

R/(di).

Example 1.65 (Classification of finitely generated abelian groups) – For every finitely gen-
erated abelian group A, there is r ∈ Z called the rank and integers 2 ≤ d1 | · · · | dn that are
nonzero, the invariant factors, so that

A ∼= Zr
⊕
i

Z/diZ.

1.7.1. Applications to linear algebra

October 12, 2023 Letting x act on Cn makes it a C[x]-module. Let the matrix representation of x be M ∈
Matn×n(C). Also, if A1, A2 ∈ Matn×n(C) make the C-vector spaces V1 and V2 into C[x]-
modules, then V1 ∼= V2 if and only if A1 is similar to A2, i.e. the matrices are the same up
to change of basis.

Let Ai be ni×ni matrices with complex entries and let Vi be the associated C[x]-module
for 1 ≤ i ≤ n. Moreover, let A ∈Mn×n(C) and let V be its associated C[x]-module. Then if
there is a module isomorphism V ∼= V1 ⊕ · · · ⊕ Vn, then there exists B ∈ GLn(C) such that

BAB−1 =

A1

. . .

An

.
1.7.2. Elementary divisor form

Another way to decompose modules is with the Chinese remainder theorem for rings.

Theorem 1.66 (Chinese remainder theorem)
Let R be a unique factorization domain. Let d ∈ R so that d = upe11 · · · penn where pi
are primes such that pi 6= pj if i 6= j and u is invertible. Then R/(d) ∼=

⊕n
i=1R/(p

ei
i ).

Hence, we can first decompose M into its invariant factors M ∼=
⊕

iR/(di), and then
further decompose each R/(di) into the form given by the Chinese remainder theorem.
Combining these, we may write M ∼=

⊕
j R/(p

ej
j ) for some primes pj and power ej . The list

(with multiplicity) of pejj is called the elementary divisors.
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Example 1.67 (Algorithm to go from invariant factor form to elementary divisor form and
vice-versa) – Let G = Z/2⊕Z/6⊕Z/24, written in invariant factor form. Then by factorizing,

G = Z/2⊕ (Z/2⊕ Z/3)⊕ (Z/8⊕ Z/3).

Hence, the elementary divisors are (2, 2, 8, 3, 3).
Let G be written in elementary divisor form: Z/2⊕Z/4⊕Z/8⊕Z/5⊕Z/9. Then by writing

2 22 23

1 1 51

1 1 91

and multiplying the columns, we can turn it into elementary divisor form:

G = Z/2⊕ Z/4⊕ Z/360.

We have a correspondence from invariant factors to elementary divisors by the procedures
in the previous example.

1.7.3. Rational canonical form

The invariant factor and elementary divisor decomposition of modules works just as well
for C[x]-modules, which we explore in this section. First we define the natural way to
represent multiplication by x in a C[x] module quotiented by a polynomial.

Definition 1.28
Let p(x) = anx

n+ · · ·+ a1x+ a0 where an 6= 0 and consider C[x]/(p(x)). Then we have
an (ordered) basis (1, x, . . . , xn−1). The matrix

Ap :=



0 0 · · · · · · · · · −a0/an
1 0 · · · · · · · · · −a1/an
0 1 · · · · · · · · · −a2/an

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 1 −an−1/an


,

called the companion matrix, represents multiplication in C[x]/(p(x)) by x.

Suppose A ∈ Matn×n(C) and let the indeterminate x act on the vector space V ∼= Cn by
multiplication by A, thereby turning it into a C[x]-module. Then there are polynomials
(the invariant factors) d1(x) | · · · | dn(x) such that

V ∼= C[x]/(d1)⊕ · · · ⊕ C[x]/(dn(x)).

Hence, there is B ∈ GLn(C) such that

BAB−1 =

Ad1

. . .

Adn

.
Since invariant factors are unique, this matrix, called the invariant factor rational canon-
ical form is unique. This generalizes to a field k. Two matrices are similar if and only if
they have the same invariant factor rational canonical form.
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Moreover, in a k[x]-module, there is a (unique) collection of primes pj(x) ∈ k[x] and
ej ∈ N ∪ {0} so that

V ∼=
⊕
j

k[x]/(p
ej
j ).

There are the elementary divisors so that there exists C ∈ GLn(k) such that

CAC−1 =

Ap
e1
1

. . .

Apen
n

.
This is the elementary divisor rational canonical form. When people refer to rational
canonical form, they are usually referring to the invariant factor rational canonical form,
and many of the following results are related to the invariant factors.

1.7.4. Characteristic and minimal polynomial

Let x act on V ∼= kn by A ∈ Matn×n(k), turning it into a k[x]-module.

Definition 1.29
Let χA(x) := det(xI −A) be the characteristic polynomial.

Example 1.68 – Let A =

[
2 1
1 1

]
.

χA = det

([
x

x

]
−A

)
= (x− 2)(x− 1)− 1.

Lemma 1.69
χA(x) = d1(x) · · · dn(x).

Proof. We need the following claims:
Claim 1.4. χBAB−1 = χA for any B ∈ GLn(k).

Proof.

χBAB−1 = det(xI −BAB−1)

= det(B(xI)B−1 −BAB−1)

= det(B(xI −A)B−1)

= det(B) det(xI −A) det(B−1)

= χA. �

We bring A into rational canonical form by conjugating it with some matrix in
GLn(k):

A = BAB−1 =

A1

. . .

An

.
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Claim 1.5. χA = χA1
· · ·χAk

.

Proof.

χA = det(xI −A)
= det(xI −BAB−1)

=

xI −A1

. . .

xI −Ak


= det(xI −A1) · · · det(xI −Ak)

= χA1
· · ·χAk

. �

By letting

A =


0 0 · · · −a0
1 0 · · · −a1

. . .
. . .

...
1 −an−1


I claim that χA(x) = xn + an−1x

n−1 + · · ·+ a0. We prove this by inducting on n. The
base case is trivial.

χA = det


x . . .

x

−A


= det



x 0 · · · a0
−1 x · · · a1

. . .
. . .

...
−1 x+ an−1




= x det



x 0 · · · a1
−1 x · · · a2

. . .
. . .

...
−1 x+ an−1


+ (−1)n−1a0 det



−1 x

. . .
. . .

. . . x
−1




= x(xn−1an−1x
n−2 + · · ·+ a1) + (−1)n−1a0(−1)n−1

= xn + an−1x
n−1 + · · ·+ a0.

Definition 1.30
The minimal polynomialmA(x) is the lowest degree monic polynomial so thatmA(A) =
0. Recall if p(x) = xn + · · ·+ a0x

0 then p(A) := An + · · ·+ a0I.

October 17, 2023 Let evA : k[x]→ Matn×n(k) : p(x) 7→ p(A) be the evaluation map, a ring homomorphism.
Since k[x] is a principal ideal domain, ker(evA) = (mA). Hence, any polynomial that eval-
uates on A to 0 is a multiple of mA.
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Example 1.70 (Comparing characteristic is not necessarily minimal polynomial) – If A =[
1 1
0 1

]
, then χA = (x− 1)2 = mA.

On the other hand, if A = diag(1, 1) =

[
1 0
0 1

]
, then χA = (x− 1)2, but mA = x− 1.

Theorem 1.71 (The minimal polynomial is the last invariant factor)
mA = dm, so dm = mA | d1 · · · · · dm = χA, so χA(A) = 0. Moreover, any root of χA is a
root of mA since di | dm for all i.

Proof. For the first part we prove the following claim:
Claim 1.6. If B ∈ GLn(k), then mBAB−1 | mA.

Proof. Since
mA = mB−1(BAB−1)B | mBAB−1 | mA,

it is sufficient to show that mA = mBAB−1 .
It suffices then to show that mA(BAB

−1) = 0. Let mA =
∑

i aix
i.

mA(BAB
−1) =

∑
i

ai(BAB
−1)i

=
∑
i

aiBA
iB−1

= B

(∑
i

aiA
i

)
B−1

= BmA(A)B
−1 = 0. �

Suppose that A is a block diagonal matrix with blocks A1, . . . , Am. Given p(x) ∈ k[x],

p(A) =

p(A1)
. . .

p(Am)

.
So mA = lcm(mA1

, . . . ,mAm
).

By rational canonical form, there exists B ∈ GLn(k) such that

BAB−1 =

Ad1

. . .

Adm

.
So mA = lcm(mAd1

, . . . ,mAdm
). It suffices to show that mAdi

= di. Adi is given by the
action of x by left multiplication on k[x]/(di). Hence, for p ∈ k[x], p(Adi

) is given by
left multiplication by p(x) on k[x]/(di). But p(x) = 0 in k[x]/(di) ⇐⇒ di | p. Then
di = mAdi

.
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Example 1.72 (HW6 Problem 2) – Find all similarity classes of matrices in Mat6×6(C) such
that their minimal polynomial is mA = (x+ 2)2(x− 1) = x3 + 3x2 − 4.

mA is the last invariant factor. We need to come up with all lists of invariant factors whose
product is a degree 6 polynomial (since the matrix is 6× 6).

1.
{
(x+ 2), (x+ 2), (x+ 2), (x+ 2)2(x− 1)

}
=

{
(x+ 2), (x+ 2), (x+ 2), x3 + 3x2 − 4

}
:

−2
−2

−2
0 0 −4
1 0 0
0 1 3


2.

{
(x− 1), (x− 1), (x− 1), (x+ 2)2(x− 1)

}
=

{
(x− 1), (x− 1), (x− 1), x3 + 3x2 − 4

}
:

1
1

1
0 0 −4
1 0 0
0 1 3


3.

{
(x+ 2), (x+ 2)2, (x+ 2)2(x− 1)

}
=

{
(x+ 2), x2 + 4x+ 4, x3 + 3x2 − 4

}
:

−2
0 −4
1 −4

0 0 −4
1 0 0
0 1 3


4.

{
(x+ 2), (x+ 2)(x− 1), (x+ 2)2(x− 1)

}
=

{
(x+ 2), x2 + x− 2, x3 + 3x2 − 4

}
:

−2
0 2
1 −1

0 0 −4
1 0 0
0 1 3


5.

{
(x− 1), (x− 1)(x+ 2), (x+ 2)2(x− 1)

}
=

{
x− 1, x2 + x− 2, x3 + 3x2 − 4

}
:

1
0 2
1 −1

0 0 −4
1 0 0
0 1 3


6.

{
(x+ 2)2(x− 1), (x+ 2)2(x− 1)

}
=

{
x3 + 3x2 − 4, x3 + 3x2 − 4

}
:

0 0 −4
1 0 0
0 1 3

0 0 −4
1 0 0
0 1 3


This shows the six similarity classes.
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Corollary 1.73
Let k be a subfield of the field L. Let A ∈ Matn×n(k) and Ak (resp. AL) be the action
of A on kn (resp. Ln), then mAk

= mAL
.

Proof. There exists B ∈ GLn(k) such that

BAB−1 =

Ad1

. . .

Adm

.
This expression still makes sense in Matn×n(L). The invariant factors are unique, so
the invariant factors for AL : L→ L are still d1 | · · · | dm, but dm = mAL

= mAk
.

Example 1.74 – We know Q ⊆ R ⊆ C as subfields. Let

A =

[
2 1
1 1

]
.

Notice that A is well-defined with entries in Q, R, or C, so we may define maps AQ : Q → Q,
AR : R → R, AC : C → C by multiplication by this matrix. The minimal polynomials mAQ , mAR ,
mAQ are all equal.

1.8. Jordan canonical form

Lemma 1.75 (Jordan blocks)
Let λ ∈ k. Let p(x) = (x− λ)e for some e > 0. Then there exists B ∈ GLe(k) such that

BApB
−1 =


λ

1
. . .

. . .
. . .

1 λ

 .
These are called Jordan blocks.

Proof. Let C := Ap − λI, so mAp
= (x− λ)e, so mC = xe. So there exists B ∈ GLe(k)

such that

BCB−1 = Axe =


0 0

1
. . .

...
. . .

. . .
...

1 0

 .
Hence

BApB
−1 = B(C+λI)B−1 = BCB−1+λI =


0 0

1
. . .

...
. . .

. . .
...

1 0

+

λ 0

. . .
...

. . .
...
λ

 .
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Definition 1.31
A Jordan matrix is a block diagonal matrix with Jordan blocks on the diagonal.

Theorem 1.76 (Jordan canonical form)
Suppose χA(x) = (x − λ1) · · · (x − λn), where λi ∈ k. Then there exists B such that
BAB−1 is a Jordan matrix. The Jordan blocks are unique up to permutation.

Proof. Note that d1 · · · dm = χA = (x − λ1) · · · (x − λn). The elementary divisors of
V ∼= kn w/ the associated k[x]-module structure are (x − λi)ej . There is B ∈ GLn(k)
so that

BAB−1 =

A(x−λ1)e1

A(x−λ2)e2

. . .

.
By the lemma, each A(x−λi)

ej is conjugate to a Jordan block.

Remark 1.77. The Jordan canonical form is very useful, but it relies on the fact that all
the roots of the characteristic polynomial belong to the field we work over. This always
holds if k = C. However, matrices such as the 2× 2 rotation matrices rotθ, θ ∈ (0, 2π) \ {π}
cannot be conjugated to Jordan canonical form in GL2(R), but can be in GL2(C).
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2 Fields Pramana

2. Fields

October 26, 2023 Recall that field is a commutative ring where 0 6= 1, and all nonzero elements have multi-
plicative inverses.

Definition 2.1
The characteristic of a field k, denoted char(k) is the smallest n ∈ N such that n ·1 = 0.
If no such n exists, we let char(k) = 0.

Lemma 2.1
char(k) is either 0 or prime.

Proof. Suppose not. Let char(k) = ab, where a, b ∈ Z>1. So a, b 6= 0. But a·b = a·b·1 =
0, a contradiction, since k has no zero divisors.

Definition 2.2
The prime subfield of k is the smallest field in k containing 1.

From Lemma 2.1, the prime subfield is one of two fields:{
Fp := Z/pZ if char(k) = p > 0,

Q if char(k) = 0.

Consider a subfield k of a field F . We may consider F as a k-vector space with elements
of F as vectors and elements of k as scalars.

Lemma 2.2
Any finite field has prime power order.

Proof. A finite field k has characteristic p > 0 (if p = 0, then it would have a prime
subfield Q, hence infinite). So k is a Fp-vector space. Moreover, since our field has
finitely many elements, it is a finite-dimensional Fp-vector space, and k ∼= Fd

p for some
d ∈ N.

Definition 2.3
If k is a subfield of L, then L is a k-vector space, called an extension of k of degree
[L : k] := dimk(L).

Example 2.3 –
• R ⊆ C is a subfield. Since C ∼= R2 as a vector space, C is an extension of R of degree

[C : R] = 2.
• Q ⊆ R is a subfield. R is an extension of Q of degree [R : Q] = ∞.
• Q is a subfield of Q(

√
2) :=

{
a+ b

√
2 | a, b ∈ Q

}
(called Q adjoined

√
2) of degree [Q(

√
2) :

Q] = 2.
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Lemma 2.4 (Degrees of extensions multiply)
Let L1 ⊆ L2 ⊆ L3 be subfields. Then [L3 : L1] = [L3 : L2][L2 : L1].

Proof. Let [L3 : L2] = m and [L2 : L1] = n. Let (v1, . . . , vn) be a basis of L2 as an
L1-vector space, and (w1, . . . , wm) be a basis of L3 as an L2-vector space.
Claim 2.1. B = (viwj)ij is a basis for L3 as an L1-vector space.

Proof. Let v ∈ L3. Then

v =

m∑
i=1

ai︸︷︷︸
∈L2

wi =

m∑
i=1

(
n∑

i=1

bij︸︷︷︸
∈L1

vj

)
wi. �

Suppose that
∑

i,j aijviwi = 0. Then

m∑
j=1

(
n∑

i=1

aijvi

)
︸ ︷︷ ︸

∈L2

wj .

Since w1, . . . , wm is a basis, it follows that
∑n

i=1 aijvi = 0 for all j. Since (v1, . . . , vn) is
a basis, aij = 0 for all i and j.

2.1. Creating new fields
Suppose that p(x) ∈ k[x] is prime. So the ideal (p) ⊆ k[x] is prime, hence maximal. So
k[x]/(p) is a field. As a k-vector space, L := k[x]/(p) has a basis

{
1, x, . . . , xd−1

}
, where

d = deg p. Therefore, [k[x]/(p) : k] = deg p. Notice that x ∈ L, so p(x) = 0. The field L is
formed by adjoining a root of p to k.

Example 2.5 (Constructing the complex numbers from the reals) – We want to add a number
i satisfying i2 = −1.

C = R[i]/(i2 = −1) = R[i]/(i2 + 1),

where i is a variable in a polynomial ring here.
Similarly, Q(

√
2) = Q[x]/(x2 − 2).

2.1.1. Finite fields

Definition 2.4
The Euler φ function is

φ(n) := # {m ∈ {1, . . . , n− 1} | gcd(m,n) = 1} .

Equivalently, it is the number of g ∈ Z/n such that 〈g〉 = Z/n (g generates Z/n).

Lemma 2.6 (Combinatorial φ identity)∑
d|n φ(d) = n.
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Proof. By our second interpretation of the φ function, we note the subgroups of Z/n
are Z/d for d | n. Each element of Z/n generates some subgroup. There are φ(d)
elements that generate Z/d.

Lemma 2.7
Let H be a finite group of order n. For each d | n, suppose that xd = id has at most d
solutions. Then H is a cyclic group of order n.

Proof. If x ∈ H has order d, then 〈x〉 is isomorphic to Z/d, so there are exactly d
solutions to xd = id and all of them belong to 〈x〉. So there are exactly φ(d) elements
of H of order d.

Suppose no element in H has order n. Then

n = |H| =
∑
d|n

# {g ∈ H | ord(g) = d} ≤
∑
d|n
d<n

φ(d) = n− φ(n) < n.

This is a contradiction.

Definition 2.5
Given a field k, k×:= k − {0} as a group under multiplication.

Proposition 2.8
If k is a finite field, then k× is cyclic.

Proof. Any polynomial p ∈ k[x] of degree d has at most d roots, so xd − 1 = 0 has at
most d solutions.

Lemma 2.9
Let k = Fp where p is an odd prime. Then −1 has a square root ⇐⇒ 4 | p− 1.

Proof. ( =⇒ ) Suppose x2 = −1 for some x ∈ Fp. Then x4 = 1, so 4 = ord(x) divides
|F×

p | = p− 1.
( ⇐= ) Let 〈g〉 = F×

p . Note −1 is the only element of order 2 in F×
p . So g p−1

2 = −1.

Hence,
(
g

p−1
4

)2
= −1.

So x2 + 1 is prime in Fp[x] ⇐⇒ 4 | p − 3 (p = 3, 7, 11, . . . work). So if 4 | p − 3 then
Fp[i]/(i

2 = −1) is a field.

2.2. Minimal polynomials
Definition 2.6

October 31, 2023 Let L be a field containing k. An element α ∈ L is called algebraic (over k) if there
exists a monic polynomial p ∈ k[x] such that p(α) = 0. The smallest degree such
polynomial is the minimal polynomial, mα.
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Example 2.10 (Examples of minimal polynomials) –
1. The minimal polynomial of

√
2 over Q is x2 − 2,

2. The minimal polynomial of
√
2 over R is x−

√
2,

3. The minimal polynomial of ζ3 = exp
(
2πi
3

)
over Q is x2 + x+ 1 (by observing ζ3 is a root

of x3 − 1 = (x2 + x+ 1)(x− 1)).

Lemma 2.11
Letα be algebraic. Let the evaluation map be the homomorphism evα : k[x]→ L : p(x) 7→
p(α). Then ker evα = (mα).

Proof. We know ker(evα) is an ideal in a PID. Any nonzero ideal in k[x] is generated
by the smallest degree monic polynomial it contains.

Lemma 2.12 (The minimal polynomial is irreducible)
mα ∈ k[x] is irreducible (prime).

Proof. Suppose not, i.e. mα(x) = f(x)g(x), where f, g ∈ k[x] are monic polynomials
such that deg f, deg g < degmα. We have

0 = mα(α) = f(α)g(α),

so either f(α) = 0 or g(α) = 0, a contradiction, since we assumed thatmα had minimal
degree.

Definition 2.7
If α1, . . . , αn ∈ L, then k(α1, . . . , αn) is the smallest subfield of L containing α1, . . . , αn.

Lemma 2.13
k(α) = im(evα) ∼= k[x]/(mα).

Proof. im(evα) := {p(α) ∈ L | p(x) ∈ k[x]} ⊆ k(α). Moreover, im(evα) ∼= k[x]/ ker(evα) =
k[x]/(mα). By the previous lemma, this is maximal. So im(evα) is a field. Thus
k(α) ⊆ im(evα).

2.3. Splitting fields
Definition 2.8
Let p(x) ∈ k[x]. The splitting field of p is the smallest degree extension of k containing
all roots of p.
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Example 2.14 (Examples of splitting fields) –
1. Let p(x) = x2 − 2 ∈ Q[x]. The splitting field of p is Q(

√
2) =

{
a+ b

√
2 | a, b ∈ Q

}
⊆ C.

2. R contains both roots of x2 − 2. It is not a splitting field of p because its degree over Q is
larger than 2 (it is infinite).

Lemma 2.15
Let p(x) ∈ k[x] such that d = deg p. Then there exists a splitting field of p (over k) of
degree ≤ d!.

Proof. Induct on d. For the base case, p(x) = x − α for α ∈ k. The splitting field
is k. Suppose d > 1. We write p(x) = q(x)r(x), q, r ∈ k[x] and q is irreducible. Let
L = k[x]/(q(x)). In this extension, there is now a root α of q. So p(x) = (x− α)h(x) in
L[x]. By the induction hypothesis, there is a field F extending L with all the roots of
h inside it, and [F : L] ≤ (d− 1)! by assumption. Moreover, [L : k] = deg q ≤ d. Hence,

[F : k] = [F : L][L : k] ≤ (d− 1)!d = d!.

Example 2.16 – Suppose we want to find the degree of the splitting field of x3−2 over Q. The
roots of x3−2 are

{
3
√
2, 3

√
2 · ζ3, 3

√
2 · ζ23

}
, where ζ3 = exp

(
2πi
3

)
. Let L = Q( 3

√
2, 3

√
2·ζ3, 3

√
2·ζ23 ) ⊆

C. Note that
L ⊇ Q(

3
√
2) ∼= Q[x]/(m 3√2

) ∼= Q[x]/(x3 − 2).

Hence,
[Q(

3
√
2) : Q] = deg(x3 − 2) = 3.

Moreover,
L ⊇ Q(ζ3) ∼= Q[x]/(mζ3) = Q[x]/(x2 + x+ 1).

Hence,
[Q(ζ3) : Q] = deg(x2 + x+ 1) = 2.

Both of these degree divide [L : Q], so [L : Q] ≥ 6. By Lemma 2.15, [L : Q] ≤ 3! = 6. This
means [L : Q] = 6.

Definition 2.9
Let F1 and F2 be extensions of k. Then F1 and F2 are isomorphic extensions if there
exists a field isomorphism τ : F1 → F2 such that τ(a) = a for all a ∈ k.

Given a field isomorphism σ : F1 → F2, let σ : F1[x] → F2[x] be defined by p(x) =∑
n≥0 anx

n is sent to pσ(x) =
∑

n≥0 σ(an)x
n.

Example 2.17 – Consider σ : C → C : z 7→ z. If p(x) = (1 + i) + (7i)x, then pσ(x) = (1− i) +
(−7i)x.

Lemma 2.18
Splitting fields are unique up to isomorphism of extensions.

We will prove this from a more general result:
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Lemma 2.19
Given a field isomorphism σ : k1 → k2 and a polynomial p ∈ k1[x], let L1 is a splitting
field of p andL2 be a splitting field of pσ, then there exists a field isomorphism τ : L1 →
L2 such that τ(a) = σ(a) for all a ∈ k1 ⊆ L1.

L1 L2

k1 k2

τ
∼=

σ
∼=

Proof. Induct on d := deg p. Base case: if p(x) = x − α, then pσ(x) = x − σ(α),
σ(α) ∈ k2. It follows that L1 = k1 and L2 = k2, so we have L1

∼= L2 by σ.
Suppose that d > 1. Write p(x) = q(x)r(x), where q is irreducible. Let α1 be a root

of q in L1. Let α2 be a root of qσ in L2.
Claim 2.2. k1(α1) ∼= k2(α2).

Proof. k1(α1) ∼= k1[x]/(q1(x)), where the isomorphism is given by f(x)
evα1−−−→

f(α1), and k2(α2) ∼= k2[x]/(q2(x)), where the isomorphism is given by f(x) evα2−−−→
f(α2). We have an isomorphism k1[x]/(q1(x))

∼−→ k2[x]/(q2(x)) sending q1 to qσ1 .
�

So there exists a field isomorphism τ1 : k1(α1) → k2(α2), whose restriction to k1 is
σ1. By the induction hypothesis, since L1 is a splitting field of a polynomial with
coefficients in k1(α1), and L2 is a splitting field of a polynomial with coefficients in
k2(α2), we can find an isomorphism τ : L1 → L2, whose restriction to k1(α1) is τ1.

2.4. Separability
November 2,

2023
Definition 2.10
For a field k and f ∈ k[x] with deg f > 0, f is separable if f does not have roots in its
splitting field that have multiplicity > 1.

In other words, we should be able to write f(x) = a
∏

i(x − zi) for a ∈ k, where zi are all
distinct.

We want a method to show that f is separable. Suppose L is a splitting field for f . Then
f(x) = a

∏
i(x− zi). Consider the formal derivative:

D : k[x]→ k[x],

:

n∑
i=1

aix
i 7→

n∑
i=1

iaix
i−1.

We may also writeD(f) = f ′. We can verify that it satisfies Leibniz’s ruleD(fg) = fD(g)+
D(f)g. It follows that

D(f(x)) = a

n∑
i=1

∏
j 6=i

(x− zj)

 .
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Lemma 2.20
f is separable ⇐⇒ gcd(f, f ′) = 1.

Proof. If we have a repeated root zj = zj′ , then (x − zj) | D(f) =⇒ (x − zj) | f ! So
gcd(f,D(F )) in L[x] has degree > 0. Conversely, if gcd(f,D(f)) has degree ≥ 1, then
it has a root zj , hence (x − zj) | a

∑n
i=1

(∏
j 6=i(x− zj)

)
. So (x − zj) |

∏
k 6=j(x − zk).

Hence, there exists k 6= j such that zk = zj .

We do not need to specify that L is a splitting field because gcd(f,D(f)) can be calculated
by Euclid’s algorithm, we know that gcd(f,D(f)) = 1 in k[x].

Example 2.21 (Discriminant) – If char(k) 6= 2, then f(x) = x2 + ax+ b =⇒ f ′(x) = 2x+ a.
gcd(x2 + ax+ b, 2x+ a) = gcd(b− a2

4
, x+ a

2
).

gcd(b− a2

4
, x+

a

2
) =

{
1 if b− a2

4
6= 0,

x+ a
2

if b− a2

4
= 0.

Example 2.22 – If f(x) = (g(x))2h(x), deg g ≥ 1. Then f is not separable.

Example 2.23 – Let k = F3(t), the field of rational function with coefficients in F3. Let
f(x) = x3 − t ∈ k[x]. f ′(x) = 3x2 = 0. Therefore, gcd(f, f ′) = f . Hence, f is not separable, but
also irreducible.

Theorem 2.24
If f ∈ k[x] is irreducible and non-separable, then

1. f ′ = 0,

2. f can be written as g(xp), where p = char(k).

Proof (sketch). (1) Suppose f ′ 6= 0 for contradiction. gcd(f, f ′) is a factor of both
and has degree < deg f and ≥ 1, which contradicts the fact that f is irreducible
(alternatively, f irreducible =⇒ gcd(f, f ′) 6= 0 =⇒ f | f ′, so f ′ = 0).

(2) Look at

f(x) =

d∏
i=0

aix
i, f ′(x) =

d∑
i=1

iaix
i−1.

Lemma 2.25
If char(k) = 0, then any irreducible polynomial is separable.

On the other hand, some fields with positive characteristic also have irreducible polyno-
mial separable.
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Theorem 2.26
If k is a finite field, then any irreducible polynomial over k is separable.

Lemma 2.27
There is a unique finite field of order pn up to isomorphism.

Proof. If L is a finite field of order pn, then (L \ {0} ,×) is a group of order pn − 1.
By Lagrange’s theorem, for any x ∈ L \ {0}, we have xpn−1 = 1, so for any x ∈ L,
xp

n − x = x(xp
n−1 − 1) = 0. So all the roots are distinct and pn roots are exactly the

pn elements in L. So L is the splitting field of xpn − x over Fp. We have uniqueness
because splitting fields are unique.

Let p be a prime and n ≥ 1 be an integer. Consider the splitting field L of xpn − x
over Fp. Let L′ ⊆ L be the set of roots xpn − x in L. Then |L′| = pn because xpn − x is
separable. Now we show that L′ is a subfield, which implies L = L′. If apn − a = 0,
bp

n−b = 0, then (a+b)p
n

= ap
n

+bp
n

= a+b, (ab)pn

= ap
n

bp
n

= ab, (a−1)p
n

=
(
ap

n)−1
=

a−1, so L′ is a subfield.

We will let Fpn denote the finite field of pn elements. Let k = Fpn , f ∈ k[x] be an
irreducible polynomial over k. Let L be the splitting field of f . Then L = Fpm for some
m ≥ n. For any α ∈ L, h(α) = 0, where h(x) = xp

m − x. Let f be irreducible. Pick a root β
of f in L. f is the minimal polynomial of β over k. h(β) = 0, so f | h. h is separable, so f is
separable.

Corollary 2.28 (xpn − x contains all irreducible polynomials in Fp)
Let p be a prime and fix an integer n > 0. Suppose that f(x) ∈ Fp[x] is irreducible.
Then f has degree d | n if and only if f | xpn − x. In particular, xpn − x is a product of
all irreducible polynomials in Fp[x] whose degree divide n.

Proof. ( =⇒ ) Suppose that deg f = d | n. F := Fp[x]/(f) is a degree d extension of Fp,
so it has order pd. If α is a root of f in F , then αpd − α = 0, so

αp2d

= (αpd

)p
d

= αpd

= α.

Iterating this argument, we have αpn

= α, so α is the root of xpn − x. So f , which is
the minimal polynomial of α over Fp divides xpn − x.

( ⇐= ) Suppose that f divides xpn − x. Let F be the splitting field of xpn − x, and
let α be a root of f in F . Then [Fp(α) : Fp] = deg f and [F : Fp] = n, so deg f | n.

For the last claim, notice that xpn − x is separable, so it is a product of the irre-
ducibles dividing it.

2.5. Algebraic elements
November 7,

2023
We define

k[α1, . . . , αn] := {p(α1, . . . , αn) | p ∈ k[x1, . . . , xn]} .
By the isomorphism k(α) ∼= k[x]/(mα), we have k[α] = k(α). We will extend this claim to

k[α1, . . . , αn] = k(α1, . . . , αn).

Let α ∈ L, let Tα : L → L : x 7→ αx be a multiplication map. This is a k-linear map by
viewing L as a field over k.
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Example 2.29 – Let L = Q(
√
2) =

{
a+ b

√
2 | a, b ∈ Q

}
, k = Q, α = 1 +

√
2. L has a Q-basis

B =
{
1,
√
2
}

. Then

Tα(1) = 1 · 1 + 1 ·
√
2

Tα(
√
2) = 2 · 1 + 1 ·

√
2,

so
[Tα]

B
B =

[
1 2
1 1

]
=: A.

Note that
χA(x) = det

[
x− 1 −2
−1 x− 1

]
= (x− 1)2 − 2 = x2 − 2x− 1.

The roots are 1±
√
2.

Proposition 2.30 (Minimal polynomial of Tα is minimal polynomial of α)
mTα

= mα. Moreover, χTα
is a power of mα.

Proof. The map

T : L→ Endk(L)

: β 7→ Tβ

is an injective ring homomorphism. Since T is a ring homomorphism, if p ∈ k[x], then
p(Tβ) = Tp(β). Then mα(Tα) = Tmα(α) = T0 = 0, so mTα | mα. 0 = mTα(Tα) = TmTα (α),
so mTα

(α) = 0 since T is injective, so mα | mTα
, hence they are equal.

The top invariant factor for a matrix A is its minimal polynomial. All other invari-
ant factors are divisors of it. Since mα is irreducible, all other invariant factors are
mα. Therefore, χTα

is a power of mα.

Example 2.31 – Find a monic polynomial in Q[x] with α = 1 + 3 3
√
2 as a root.

Let L = Q( 3
√
2), k = Q, with basis B =

{
1, 3

√
2, 3

√
4
}

. Then Tα : Q3 → Q3 has

Tα(1) = 1 · 1 + 3
3
√
2

Tα(
3
√
2) = 1 · 3

√
2 + 3 · 3

√
4

Tα(1) = 6 · 1 + 1 · 3
√
4.

Hence,

[Tα]
B
B =

1 0 6
3 1 0
0 3 1

 =: A.

Then a tedious calculation yields

χA = x3 − 3x2 + 3x− 55.

Definition 2.11
L is algebraic over k if every element of L is algebraic over k.

Remark 2.32. If L is a finite extension of k, it is algebraic. α ∈ L is algebraic ⇐⇒ k(α)
is a finite extension.
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Lemma 2.33
If α, β ∈ L and are algebraic, then k(α, β) is algebraic of degree ≤ degmα · degmβ .

Proof. k(α) ⊆ k(α, β). [k(α) : k] = degmα, so k(α, β) = (k(α))(β) ∼= (k(α))[x]/(nβ),
where nβ is the minimal polynomial of β with coefficients in k(α). Then

[k(α, β) : k(α)] = deg nβ ≤ degmβ ,

which implies

[k(α, β) : k] = [k(α, β) : k(α)] · [k(α) : k] ≤ degmα · degmβ .

Corollary 2.34
If α, β ∈ L are algebraic, then so are α + β and αβ. So {x ∈ L | x algebraic over k} is
a field. Moreover, k(α, β) = k[α, β]. By induction, if α1, . . . , αn, then k(α1, . . . , αn) =
k[α1, . . . , αn].

Example 2.35 (The corollary does not hold for non-algebraic elements) – For π ∈ R, Q[π] 6=
Q(π), since 1

π
is only in Q(π).

2.6. Algebraic closures
Definition 2.12
A field L is an algebraic closure of k if it is an algebraic extension such that any non-
constant polynomial in k[x] has a root in L. In other words, L is the splitting field of
any irreducible polynomial in k[x].

Lemma 2.36
Every field has an algebraic closure. This algebraic closure is unique up to isomor-
phism.

Proof. LetC := {L | L is an algebraic extension of k}. If si ∈ C for all i, and s1 ⊆ s2 ⊆
· · ·, then

⋃
i si is an algebraic extension of k. By Zorn’s lemma, we have a maximal

element of C, call it L, i.e. there is no L′ ⊇ L such that L′ is an algebraic extension.
Let p(x) ∈ k[x] be non-constant. Suppose for contradiction that it has no roots in

L. Let q(x) be a prime divisor of p in L[x] (note that deg q ≥ 2 because we assumed
that p did not have a root in L), so L[x]/(q) is an algebraic extension of L, and hence,
an algebraic extension of k (since the algebraic extension of an algebraic extension is
an algebraic extension).

We will not prove the second part, it is in the notes.

Lemma 2.37
If L is the algebraic closure of k, then every non-constant polynomial in L[x] has a
root in L.
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Proof. Suppose that p ∈ L[x] has no roots in L. Let α1, . . . , αd be the coefficients of p
(these are algebraic over k by definition). Then F := k(α1, . . . , αd) is a finite extension
of k. Let q be a prime factor in F [x] of p with no roots in L. So F [x]/(q) is a finite
extension of F (and hence k) that contains a root α of q. So α is a root of an element
in k[x], which implies α ∈ L. This is a contradiction because we assumed L did not
have the roots of p.

2.7. Cyclotomic fields
November 9,

2023
Some of the “nicest” fields we study are the cyclotomic fields, which are of the form Q(ζm),
where ζm is a special root of unity called a primitive root of unity.

A motivating application for this section is if A ∈ GLn(Z) such that A has finite order,
i.e. Ak = I, what are the possible values of k? It turns out, if n = 2, k belongs to the set
{1, 2, 3, 4, 6}. This does not hold if we replace Z with R, because we can pick any rotation
in GLn(R).

Definition 2.13
An nth root of unity ζ is a solution of ζn = 1. ζ is primitive if n is the smallest possible
integer such that ζn = 1 (the root is imprimitive otherwise).

Example 2.38 (Roots of unity in C) – i is a 4th primitive root of unity, since n = 4 is the
smallest n such that in = 1. i is a 8th imprimitive root of unity. In C, ζn := exp

(
2πi
n

)
is a

primitive nth root of unity. ζkn a primitive nth root of unity if and only if gcd(k, n) = 1.

Definition 2.14
The nth cyclotomic polynomial is

Φn(x) :=
∏

1≤k≤n
gcd(k,n)=1

(x− ζkn) ∈ C[x].

Lemma 2.39 (Gauss’ Lemma)
Let f, g ∈ Z[x] be monic polynomials. Suppose that f = gh, where h ∈ C[x]. Then
h ∈ Z[x].

Moreover, if f ∈ Z[x] is monic, and f = gh, where g, h ∈ Q[x] are monic, then
g, h ∈ Z[x].

Proof. The polynomial division algorithm says that since h = f(x)
g(x) , where f, g ∈ Q[x],

then h ∈ Q[x]. Let d be the smallest possible integer such that dh(x) ∈ Z[x]. Suppose
d 6= 1. Then let p be a prime divisor of d.

If r(x) ∈ Z[x], let r(x) ∈ Fp[x] where r is formed by taking r’s coefficients mod p. We
have

df(x) = g(x) · (dh(x)).

Modding the coefficients, we have df(x) = 0, g(x) 6= 0. So dh(x) = 0, so p divides all
coefficients of dh(x). So

(
d
p

)
h(x) ∈ Z[x].
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We have
xn − 1 =

∏
1≤k≤n

(x− ζkn) =
∏
d|n

Φd(x).

This allows us to show that the cyclotomic polynomials have integer coefficients.

Corollary 2.40
Φn(x) ∈ Z[x] for all n.

Proof. We induct on n. For the base case, Φ1(x) = x − 1 ∈ Z[x]. For the inductive
step, we have

xn − 1 =

(∏
d|n
d<n

Φd(x)

)
Φn(x).

So Φn(x) ∈ Z[x] by Lemma 2.39.

Proposition 2.41
Φn(x) is irreducible for all n.

Proof. Suppose not, i.e. Φn(x) = f(x)g(x) and f, g are monic in Q[x]. By Lemma 2.39,
we may assume that f, g ∈ Z[x]. Suppose f is irreducible.
Claim 2.3. If ζ is a root of f , then ζp is a root of p for all primes p - n.

Proof. Suppose not. So ζp (since p - n) is still a primitive nth root of unity, so ζp
is a root of Φn. So ζp is a root of g, so ζ is a root of g(xp). Since f is irreducible,
it is the minimal polynomial of ζ, so f(x) | g(xp). Using the bar notation from
before, f(x) | g(xp) = (g(x))

p ∈ Fp[x], so any root of f is a root of g. Since
Φn = fg, it is not separable. So xn − 1 is not separable in Fp[x]. Therefore, p | n,
a contradiction. �

Claim 2.4. Let a be an integer such that gcd(a, n) = 1. Then if ζ is a root of f , ζa is
a root of f .

Proof. Let a = p1 · · · pn, where pi are prime. Since ζ is a root of f , ζp1 is root of
f , so (ζp1)p2 is a root of f , and so on until we get that ζa = ζp1···pn is a root of
f . �

Since f has a root ζ that is a primitive nth root of unity and all primitive nth root of
unity can be written as ζa where gcd(a, b) = 1. f contains all root of Φn and hence Φn

is irreducible.

Proposition 2.42
Φn is the minimal polynomial of ζn.

As a result, we have Q(ζn) ∼= Q[x]/(Φn). It follows that [Q(ζn) : Q] = degΦn = φ(n). When
doing computations, it’s useful to have the bound φ(n) ≥

√
n/2.
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2.7.1. Application: Cyclic group actions on Q-vector spaces

Recall if G is a finite group that acts linearly on Qn, then Qn is a Q[G]-module. Moreover,
Qn decomposes into a direct sum of simple Q[G]-modules. Finally, every simple Q[G]-
module is a summand in this decomposition. Let’s look specifically at the case where
G = Z/n.

Q[Z/n] ∼= Q[x]/(xn − 1) ∼= Q[x]/

∏
d|n

Φd

 ∼=⊕
d|n

Q[x]/(Φd) ∼=
⊕
d|n

Q(ζd).

So if A ∈ Matm×n(Q) such that An = I, then as a Q[Z/n]-module, Qn decomposes into a
direct sum of modules, each isomorphic to Q(ζd) for d | n such thatA acts by multiplication
by ζd.

Given a positive integer d, the dth cyclotomic matrix is the companion matrix of Φd(x) =
xφ(d) + aφ(d)−1x

φ(d)−1 + · · ·+ a0:

Ad :=



0 0 · · · 0 −a0
1 0 · · · 0 −a1
... 1

. . .
...

...
...

. . . 0
...

0 0 · · · 1 −aφ(d)−1

 .

Proposition 2.43 (Conjugacy classes of finite order matrices in GLm(Q))
If A ∈ GLm(Q) such that An = I, then there exists some increasing sequence d1 ≤
· · · ≤ dk of divisors of n such that, up to change of basis (i.e. up to conjugacy), A looks
like a block diagonal of cyclotomic matrices:Ad1

. . .

Adm

.
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Example 2.44 (Final review) – What is the smallest positive integer n so that there exists
A ∈ Matn×n(Z) so that A2023 = I, but Ak 6= I for k ∈ {1, 7, 17, 119, 289} (the proper divisors of
2023)?
If A ∈ Matn×n(Q), then we wouldn’t have an issue. So let’s do some wishful thinking. Notice
that Q[Z/2023] ∼= Q[x]/(x2023 − 1) ∼= Q⊕Q(ζ7)⊕Q(ζ17)⊕Q(ζ119)⊕Q(ζ289)⊕Q(ζ2023), where
A acts on Q(ζd) by multiplication by ζd.

The rational canonical form of the action on Q(ζm) is a φ(m)×φ(m) matrix of order m with 1’s
on the subdiagonal and whose entries in the final column are the negatives of the coefficients
of Φm(x), which are integers.

Any m×m matrix in Q which has an order dividing 2023 is conjugate in GLm(Q) to a block
diagonal one with these matrices occurring as blocks. Let’s evaluate some φ values

φ(k) =



1 if k = 1

6 if k = 7

16 if k = 17

119 ·
(
6
7

) (
16
17

)
= 96 if k = 119 = 7 · 17

172 ·
(
16
17

)
= 272 if k = 289 = 172

2023 ·
(
6
7

) (
16
17

)
= 1632 if k = 2023

We want the matrix to have order 2023 = 172 ·7, so our most efficient choices would be (1, 2023)
and (7, 172). φ(1)+φ(2023) = 1633 is greater than φ(7)+φ(172) = 278, so we choose the latter.
The matrix is a block matrix where the first block is the 7th cyclotomic matrix and the second
block is the 172 cyclotomic matrix.

2.8. The Galois correspondence
2.8.1. Galois extensions

November 14,
2023

In the homework, we proved the following:

Proposition 2.45
If F is a splitting field, and p(x) ∈ k[x] such that p is irreducible and there is an α ∈ F
such that p(α) = 0, then p splits completely, i.e. p(x) =

∏
i(x− αi) for some αi ∈ F .

Let F be a splitting field. An intermediate field is a field k ⊆ L ⊆ F . Let L1 and L2 be
isomorphic intermediate fields via the isomorphism σ : L1 → L2 such that σ|k = idk. Then
we can lift this isomorphism σ to an isomorphism σ̃ : F → F .

For the following sections, it should be noted that when we write F/k, we are not taking
a literal quotient, this is just shorthand for saying “F over k.”

Definition 2.15
The automorphism group of F/k is defined as

Aut(F/k) :=
{
σ : F

∼−→ F | σ is a field isomorphism, σ
∣∣
k

is an isomorphism
}
,

i.e. all field isomorphisms that fix k. If α ∈ F and σ ∈ Aut(F/k), then we let ασ :=
σ(α). If p ∈ F [x] such that p(x) =

∑
n anx

n, then pσ(x) :=
∑

n a
σ
nx

n.

We have
0 = 0σ = p(α)σ = pσ(ασ) = p(ασ).

From this, it follows that {ασ | σ ∈ Aut(F/k)} consists of roots of mα. Therefore, σ simply
permutes the roots of the polynomial p.
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Example 2.46 –
1. Aut(C/R) consists of the identity, and complex conjugation. We will prove later that

these are the only ones. Hence, Aut(C/R) ∼= Z/2.
2. Aut(Q(

√
2/Q)) = {id, τ}, where τ(a+ b

√
2) = a− b

√
2. Hence, Aut(Q(

√
2/Q)) ∼= Z/2 as

well.

We observe in these examples that the group order is exactly the degree of the field exten-
sion. This leads us to the following proposition:

Proposition 2.47
|Aut(F/k)| ≤ [F : k]. Equality holds if and only if for all α ∈ F its minimal polynomial
is separable and splits.

Proof. Induct on [F : k]. The base case is trivial. Let α ∈ F and let

Nα := # {σ(α) | σ ∈ Aut(F/k)} ≤ degmα.

Claim 2.5. Nα = degmα if and only if mα is separable and splits.

Proof. ( =⇒ ) mα has degmα distinct roots, all in F .
( ⇐= ) Let β be another root of mα (we have degmα many choices). Then the

isomorphism
k(α) ∼= k[x]/(mα) ∼= k(β)

extends to an element σ ∈ Gal(F/k), so Nα = degmα. �

If σ1, σ2 ∈ Aut(F/k), then σ1(α) = σ2(α) ⇐⇒ σ−1
1 σ2 ∈ Aut(F/k(α)) ⇐⇒ σ1 ∈

σ1 ·Aut(F/k(α)). Therefore, the size of the coset is

|Aut(F/k)/Aut(F/k(α))| = Nα.

It follows that

|Aut(F/k)| = |Aut(F/k(α))| · |Aut(F/k)/Aut(F/k(α))|
= |Aut(F/k(α))| ·Nα

≤ [F : k(α)]

= [F : k(α)][k(α) : k] = [F : k].

Next we show equality holds ⇐⇒ ∀α ∈ F , mα is separable and splits.
( =⇒ ) If equality holds, then Nα = degmα. So by the Claim 2.5, mα is separable

and splits.
( ⇐= ) In this case, Nα = degmα and moreover, for any β ∈ F its minimal poly-

nomial over k(α) is separable and splits since this is true over k. By the inductive
hypothesis, |Aut(F/k(α))| = [F : k(α)].

The case of equality is special enough for us to delegate a new definition for it.
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Definition 2.16
A finite extension F over k is Galois if any of the following equivalent conditions hold:

1. |Aut(F/k)| = [F : k],

2. for all α ∈ F , mα is separable and splits,

3. F is the splitting field for a separable polynomial.

We call Aut(F/k) =: Gal(F/k) the Galois group if the extension is Galois.

Example 2.48 (Non-example of Galois extension) – Q( 2
√
3) is not a Galois extension over Q.

We can show this in two ways. By property (2), since m 2√3
= x3 − 2 and this polynomial does

not split over Q( 2
√
3), since this field is contained in R, but some roots belong in C.

By property (1), if we assume σ ∈ Aut(Q( 2
√
3)/Q), then it must fix 3

√
2. This implies σ = id.

Hence, 1 =
∣∣Aut(Q( 2

√
3)/Q)

∣∣ 6= [Q( 2
√
3) : Q] = 3.

2.8.2. The primitive element theorem

Definition 2.17
If G ≤ Aut(F/k), then its fixed field FixG(F ) := {x ∈ F | σ(x) = x, ∀σ ∈ G}. It is a
field because σ(x+ y) = σ(x) + σ(y) = x+ y and σ(xy) = σ(x)σ(y) = xy.

Lemma 2.49
Let F/k be Galois. Then FixAut(F/k)(F ) = k.

Proof. Let G = Aut(F/k) and L := FixG(F ). Then F/L is Galois. Then [F : L] =
|Aut(F/L)| = |Aut(F/k)| = [F : k], where the middle inequality holds because any
automorphism fixing k automatically fixed L. So k = L.

Lemma 2.50
If F/k is Galois, then there are only finitely many intermediate fields.

Proof. Consider the maps

{intermediate fields} f−→ {subgroups of Aut(F/k)} ,
L 7→ Aut(F/L).

{subgroups of Aut(F/k)} g−→ {intermediate fields} ,
H 7→ FixH(F ).

By the previous lemma, FixAut(F/L)(F ) = L, so g ◦ f = id, so f is injective.
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Theorem 2.51 (Primitive element theorem)
Let F/k be a finite extension with finitely many intermediate fields. Then there exists
α ∈ F such that F ∼= k(α).

Proof. If F is a finite field and α is a generator of the cyclic group F×, then F ∼= k(α).
So suppose k is an infinite field. Since F is a finite extension, F = k(α1, . . . , αn).

It suffices to show that k(α1, α2) = k(β) for some β ∈ F . Since there exists finitely
many intermediate fields, L := k(α1 + aα2) = k(α1 + bα2) for some a, b ∈ k, a 6= b.
L contains (α1 + aα2) and (α1 + bα2), so it contains the difference (a − b)α2. So L
contains

α2 =
(a− b)α2

(a− b)
,

so L contains α1 = α1 + aα2 − aα2, so L = k(α1, α2) (let β = α1 + aα2).

Corollary 2.52
If K/Q is a finite extension, then K = Q(α) for some α.

Proof. Suppose K = Q(α1, . . . , αn). Let mαi
be the minimal polynomial of αi. Let

p = lcm(mαi
)ni=1. In Q[x], any product of distinct primes is separable, so the splitting

field F of p is Galois, and contains K. Since F has finitely many intermediate fields
between itself and Q, so does K, so it satisfies the primitive element theorem.

2.8.3. The Galois correspondence theorem

We now get to the celebrated Galois correspondence theorem. The theorem itself is im-
portant, but to get a sense for how to use it, we covered its use in certain fields we have
encountered so far.

Theorem 2.53 (Galois correspondence theorem)
The maps

{intermediate fields} f−→ {subgroups of Aut(F/k)} ,
L 7→ Aut(F/L),

{subgroups of Aut(F/k)} g−→ {intermediate fields} ,
H 7→ FixH(F ),

are bijections.

Proof. We have that f is an injection. We will show that g is an injection. Let
H ≤ Aut(F/k), and let L = FixH(F ). We want to show that Aut(F/L) = H. By
the primitive element theorem, F = L(α) for some α. Let

p(x) =
∏
h∈H

(x− αh) = x|H| −

(∑
h∈H

αh

)
x|H−1| + · · ·+ (−1)|H|

∏
h∈H

αh.
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Each of these coefficients are h invariant, since they are symmetric polynomials in{
αh | h ∈ H

}
. Therefore, p(x) ∈ L[x]. |H| ≤ |Aut(F/L)| = [F : L] = degmα ≤ deg p =

|H|. Therefore, H = Aut(F/L).

Example 2.54 – Let F = Q(
√
2,
√
3) is the splitting field of (x2 − 2)(x2 − 3), so F is Galois.

|Aut(F/k)| = 4, so Aut(F/k) ∼= Z/4, or Z/2×Z/2. The number of subgroups of Z/4 is 3, so the
Galois correspondence says that Aut(F/k) ∼= Z/2× Z/2.

Fix a basis (e1, e2) so that F2
2 = F2 · e1 + F2 · e2. We represent the correspondence with a

diagram of the subgroups, where inclusion is going down, and the intermediate fields, where
the inclusion is going up, to emphasize the connection between these.

Subgroups Intermediate fields

{id} Q(
√
2,
√
3)

F2 · e1 F2 · e2 F2 · (e1 + e2) Q(
√
2) Q(

√
3) Q(

√
6)

F2 × F2 Q

November 16,
2023 Example 2.55 – Let k = Q and F = Q(ζn). Then F/k is Galois because F is the splitting field

of Φn(x). So |Aut(Q(ζn)/Q)| = [Q(ζn) : Q] = φ(n).
If σ ∈ Aut(Q(ζn)/Q). σ(ζn) = ζdn for d coprime to n (since roots are sent to roots of a

polynomial in k). Write σd for the automorphism sending ζn 7→ ζdn. Recall the automorphism
is a group where the operation is composition.

σd1 ◦ σd2(ζn) = σd1(ζ
d2
n ) = σd1(ζn)

d2 = (ζd1n )d2 = ζd1d2n = σd1d2(ζn).

So there is an isomorphism

Aut(Q(ζn)/Q) ∼= (Z/nZ)×,
σd 7→ d.

Example 2.56 – Following the previous discussion, suppose we want to find all subfields of
Q(ζ7). Then

Aut(Q(ζ7)/Q) ∼= (Z/7)× ∼= Z/6.
The subgroups of Z/6 are {id}, Z/2 = 〈−1〉, Z/3 = 〈2〉, and Z/6.

Subgroups of (Z/7)× Intermediate fields

{id} Q(ζ7)

Z/2 Q(ζ7 + ζ−1
7 )

Z/3 Q(ζ7 + ζ27 + ζ47 )

Z/6 Q

3

2

3

2

2

3

3

2
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Example 2.57 – Let p be prime and let n > 0. Fpn/Fp is a Galois extension because it is a
splitting field of xpn − x (which is separable). We have

n = [Fpn : Fp] = |Aut(Fpn/Fp)| .

Let σp : Fpn → Fpn : x 7→ xp. So σk
p fixes the elements of Fpn that satisfy xpk − x = 0, i.e. the

field Fpk ⊆ Fpn . So ord(σp) = n. Hence, Aut(Fpn/Fp) = 〈σp〉 ∼= Z/nZ.

Lemma 2.58 (Normal subgroups correspond to Galois extensions)
Let F/k be Galois. Let L be an intermediate fieldNovember 21,

2023
such that H = Aut(F/L), G =

Aut(F/k). Then the following are equivalent:

1. σ(L) = L for all σ ∈ G,

2. H E G,

3. L/k is Galois.

Moreover, G/H ∼= Gal(L/k).

Proof. ((1) =⇒ (2) & (3)) Then there exists a homomorphism

ResL : Aut(F/k)→ Aut(L/k),

σ 7→ σ
∣∣
L
.

Then ker(ResL) = Aut(F/L) E Aut(F/k). Moreover,

|im(ResL)| =
|Aut(F/k)|
|Aut(F/L)|

=
[F : k]

[F : L]
= [L : k].

Since
|im(ResL)| ≤ |Aut(L/k)| ≤ [L : k],

ResL is surjective and L/k is Galois.
((3) =⇒ (1)) Let L/k be Galois, so L is a splitting field, so L is preserved by any

σ ∈ Aut(F/k).
((2) =⇒ (1)) Assume Aut(F/L) E Aut(F/k). Let σ ∈ Aut(F/k). σ(L) is a field fixed

by σAut(F/L)σ−1 = Aut(F/L), so σ(L) = L.
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Example 2.59 – Let F = Q(ζ3,
3
√
2), which is a splitting field of x3 − 2. Gal(F/Q) = Sym(3),

which acts on the roots of x3 − 2. We have the diagram

S/gps Int. fields

{id} Q(ζ3,
3
√
2)

〈(12)〉 〈(23)〉 〈(13)〉 Q( 3
√
2) Q(ζ3

3
√
2) Q(ζ23

3
√
2)

〈(123)〉 Q(ζ3)

Sym(3) Q
D

which shows that Q( 3
√
2), Q(ζ3

3
√
2), and Q(ζ23

3
√
2) are not Galois extensions of Q, while Q(ζ3)

is. Indeed, Q(ζ3) is the splitting field of x3−1
x−1

= x2 + x+ 1.

2.8.4. Composites

Definition 2.18
Let L1, L2 ⊆ F be subfields. The composite field L1L2 is the smallest field in F
containing L1 and L2.

The following lemma is immediate from the Galois correspondence:

Lemma 2.60
Let F/k be Galois with intermediate fields L1, L2. Set Hi := Aut(F/Li). Then
Aut(F/L1 ∩ L2) = 〈H1,H2〉, and Aut(F/L1L2) = H1 ∩H2.

Subgroups Intermediate fields

H1 ∩H2 L1L2

H1 H2 L1 L2

〈H1,H2〉 L1 ∩ L2

Proof. L1 ∩L2 is the biggest field contained in L1 and L2, so by the Galois correspon-
dence it must be fixed by the smallest group containing H1 and H2.
L1L2 is the smallest field containing L1 and L2, so by the Galois correspondence it

must be fixed by the biggest subgroup containing H1 and H2.

Lemma 2.61
[L1L2 : k] ≤ [L1 : k][L2 : k].

Proof. Let (α1, . . . , αs), (β1, . . . , βr) be a basis of L1 and L2 respectively. Since L1L2

is a finite extension, L1L2 = k(α1, . . . , αs, β1, . . . , βr) = k[α1, . . . , αs, β1, . . . , βr]. Let
S = (αiβj)ij . It suffices to let p ∈ k[x1, . . . , xs, y1, . . . , yr] be a monomial (i.e. of the
form xa1

1 · · ·xas
s y

b1
1 · · · ybrr ) and to show that p(α1, . . . , αs, β1, . . . , βr) ∈ spank(S). Then
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let
p(α1, . . . , αs, β1, . . . , βr) = `1`2,

where `1 ∈ L1, `2 ∈ L2. But `1 ∈ spank(α1, . . . , αs), and `2 ∈ spank(β1, . . . , βr).

By induction, we have that [L1 · · ·Ln : k] ≤ [L1 : k] · · · [Ln : k].

2.9. The fundamental theorem of algebra
We will now apply the Galois correspondence to prove other theorems, starting with a
(mostly) algebraic proof of the fundamental theorem of algebra. Before we begin the proof,
we will need some group theory results.

Definition 2.19
Let p be a prime. A group G is a p-group if |G| = pk for some k ∈ N.

Lemma 2.62
IfG is a p-group, Z(G) = {g ∈ G | hg = gh, ∀h ∈ G} has order divisible by p. Moreover,
G has a nontrivial abelian quotient.

Proof. If G acts by permutations on a set X and X =
⋃n

i=1G · xi for some xi ∈ X,
then

|X| =
n∑

i=1

|G · xi| =
n∑

i=1

|G|
|StabG(xi)|

This is the
orbit-stabilizer

theorem. Let X = G. Let G y G by conjugation. Applying the orbit-stabilizer theorem, if
x1, . . . , xn is a list of representatives for each conjugacy class in G,

|G| =
n∑

i=1

|G|
|StabG(xi)|

=

n∑
i=1

|G|
|C(xi)|

Where C(xi) =
{h ∈ G | hxi = xih}
is the centralizer
of xi. This is the

class equation.

= |Z(G)|+
∑

xi /∈Z(G)

|G|
|C(xi)|

.

Since xi /∈ Z(G), |G| > |C(xi)|, and |G|
|C(xi)| is divisible by p for each i. This implies

|Z(G)| is divisible by p.
For the next claim, induct on |G|. For the base case, if |G| = p, then G = Z/p. For

the inductive step, if G = Z(G) we are done. If G 6= Z(G), then G/Z(G) has smaller
size, hence a nontrivial abelian quotient.

Theorem 2.63 (Fundamental theorem of algebra)
If p ∈ C[x] is non-constant, then p has a root in C.

Proof. We want to show that C is the algebraic closure of R, i.e. for any monic irre-
ducible f ∈ R[x], we want to show that all roots of f belong in C.We can work

with R because
the algebraic

closure of C is
just C again.

WLOG, assume
f(x) 6= x2 + 1. Let F be the splitting field of f(x)(x2 + 1). We want to show F = C.

Let G be the Galois group of F/R. Let P be the Sylow 2-subgroup of G, i.e. some
subgroup such that [G : P ] is odd. Let L = FixP (F ), the corresponding intermediate
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field in the Galois correspondence.

Int. fields S/gps.

F {id}

L P

R G

odd odd

Since [L : R] is odd, if α ∈ L, then its minimal polynomial mα ∈ R[x] has odd degree.
So mα has a root in R by analysis (look at x→∞ and x→ −∞ and use the interme-
diate value theorem). So mα = x − α (if it were higher degree it would reduce). So
L = R and hence G = P .

LetP ′ = Gal(F/C). This is a 2-group, i.e. |P ′| = 2k. Suppose k 6= 0 for contradiction.
By Lemma 2.62, there exists N E P ′ such that P ′/N ∼= Z/2. So there exists K such
that K/C is a quadratic extension of C.

Int. fields S/gps.

F {id}

K N

C P ′

R P

22

Thus, K is the splitting field of a quadratic polynomial in C[x], i.e. it is created by
adjoining a root of some ax2 + bx + c ∈ C[x]. By the quadratic formula, K = C, a
contradiction.

Remark 2.64. As should be expected, we need some analysis to complete the proof of the
fundamental theorem of algebra (in this case, the mean value theorem). However, the
majority of this proof is using Galois theory.

2.10. Algebraic number theory
This section is adapted from homework exercises.

Definition 2.20
Let K be a finite extension of Q. We call K an algebraic number field. Define the
(algebraic) integers in K, denoted OK , as the set of all α ∈ K such that there is a
monic polynomial p with integer coefficients such that p(α) = 0. In symbols,

OK := {α | ∃p ∈ Z[x] monic, p(α) = 0} .
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Proposition 2.65
α is an algebraic integer ⇐⇒ its minimal polynomial has integer coefficients.

Proof. ( =⇒ ) mα(x) | p(x), so by the division algorithm, we have mα(x)g(x) = p(x)
for some g(x) ∈ Q[x]. g(x) is monic by looking at the leading coefficients. By Gauss’
lemma, g,mα ∈ Z[x].

(⇐= ) Let p = mα ∈ Z[x].

Example 2.66 – Let d be a squarefree integer. Determine OQ(
√
d).

Let a + b
√
d ∈ Q(

√
d). Since Q(

√
d) is a degree 2 extension, the minimal polynomial of any

a + b
√
d will be of degree 2. Then, in order for the coefficients to be rational, it will be of the

form
(x− (a+ b

√
d))(x− (a− b

√
d)) = x2 − 2ax+ a2 − b2d.

If we want the coefficients to lie in Z, then we need a ∈ 1
2
Z by the degree 1 coefficient. If a ∈ Z,

then b ∈ Z by the constant term. It suffices to check a = 1
2

and b = 1
2
. If a = 1

2
, then(

1

2

)2

− b2d ∈ Z

=⇒ −4b2d ≡ −1 (mod 4)

=⇒ 4b2d ≡ 1 (mod 4)

=⇒ b /∈ Z.

If b = 1
2
, then we require

4

(
1

2

)2

d ≡ 1 (mod 4) =⇒ d ≡ 1 (mod 4).

If this holds, then 1
2
+ 1

2

√
d ∈ OK . Therefore,

OK =
{
a+ b

√
d | a, b ∈ Z

}
,

or
OK =

{
a+ b

√
d+ c

(
1

2
+

1

2

√
d

)
| a, b, c ∈ Z

}
, if d ≡ 1 (mod 4).

Lemma 2.67
Let Z[α] = {p(α) | p ∈ Z[x]}. α is an algebraic integer ⇐⇒ Z[α] is a finitely-generated
free Z-module.

Proof. ( =⇒ ) Letmα(x) = xn+an−1x
n−1+ · · ·+a0. If p(α) ∈ Z[α], then we can reduce

the polynomial to a degree n− 1 polynomial in α by the replacement

αn = −an−1α
n−1 − · · · − a0.

On the other hand, elements of the LHS are polynomials in α with coefficients in Z.
Hence,

spanZ
{
1, α, . . . , αn−1

}
= Z[α].

Suppose there exist b0, . . . , bn−1 ∈ Z that are not all zero such that

b0 + b1α+ · · ·+ bn−1α
n−1 = 0.
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But then
∑

n bnx
n is a nonzero polynomial in Q[x] of degree ≤ n− 1 that had a root of

α. If we make this monic by dividing by the leading coefficient, this contradicts the
fact that mα is a minimal polynomial. Hence, 1, α, . . . , αn−1 are a basis for Z[α].

(⇐= ) Let Z[α] = spanZ {e1, . . . , en}. Write

αei =

n∑
j=1

cijej

for some constants {cij}i,j . Then α is an eigenvalue of the matrix [cij ] because

α

e1...
en

 =

c11 · · · c1n
...

. . .
...

cn1 · · · cnn


e1...
en

 .
α is then a root of the characteristic polynomial χ(x) of the matrix [cij ], which is monic
and whose coefficients belong to Z.

Lemma 2.68
If α, β are algebraic integers, Z[α, β] is a finitely generated free Z-module.

Proposition 2.69
OK is a ring.

Proof. Z[αβ],Z[α + β] ⊆ Z[α, β] are submodules of a free module over a PID, hence
they are free. Since they are clearly finitely generated, it follows that αβ, α+ β ∈ OK

by Lemma 2.67.

2.11. Computing Galois groups over Q
November 28,

2023
Note that the splitting field of any polynomial f ∈ Q[x] is Galois because finite extensions
of Q are separable. Let its splitting field be K. Define Gf := Gal(K/Q). The goal of this
section is to compute Gf , and we will employ several tools, the strongest of which will
be Dedekind’s theorem, which gives us properties about how automorphisms permute the
roots.

2.11.1. Irreducibility

Lemma 2.70 (Rational root test)
Let f(x) = anx

n + · · · + a1x + a0 ∈ Z[x]. Then if c
d is a root, where c, d are coprime

integers, then c | a0 and d | an.

Proof. 0 = dnf
(
c
d

)
= anc

n + an−1c
n−1d + · · · + acd

n−1 + a0d
n. The first n − 1 terms

on the RHS are divisible by c, and so is the 0 on the LHS. Since d shares no prime
divisors with c, c | a0 for the sum to be divisible by c.

The last n − 1 terms on the RHS are divisible by d, so similarly we prove that
d | an.
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Example 2.71 – For what a ∈ Z is p(x) = x3 + ax+ 1 irreducible?
If p is irreducible in Q[x], then it has a linear factor, hence a root in Q. By Lemma 2.70, the
only possible rational roots are ±1. p(1) = 0 ⇐⇒ 2 + a = 0 ⇐⇒ a = −2. p(−1) = 0 ⇐⇒
−a = 0 ⇐⇒ a = 0s. So p is irreducible if and only if a /∈ {−2, 0}.

Lemma 2.72 (Eisenstein’s criterion)
Let f(x) = anx

n + · · ·+ a0 ∈ Z[x]. Let p be a prime. Suppose

1. p - an,

2. p divides all other coefficients,

3. p2 - a0.

Then f is irreducible.

Proof. Suppose that f = gh, where g, h ∈ Z[x] and deg g, deg h > 0. So, reducing these
polynomials mod p,

anx
n = f = gh,

so g = c1x
k and h = c2x

` for some constants c1, c2. So p | g(0), p | h(0), which implies

p2 | h(0)g(0) = f(0) = a0,

a contradiction.

Definition 2.21
A transitive subgroup G ≤ Sym(n) is a subgroup such that for all 1 ≤ i, j ≤ n, there
exists g ∈ G such that g · i = j.

For example, 〈(1 · · ·n)〉 is a transitive subgroup, but 〈(12)〉 is not.

Lemma 2.73
If f ∈ Q[x] irreducible has degree d, then Gf permutes the roots of f . In fact, Gf

can be naturally identified with a subgroup of Sym(deg f). If α, β are roots of f in a
splitting field K of f , then Q(α) ∼= Q[x]/(f) ∼= Q(β). This isomorphism extends to an
isomorphism of K to itself, so Gf are transitive.

Recall that if H is a subgroup of Sym(n) that contains the cycles (12), (12 · · ·n), then
H = Sym(n). With this fact, we prove the following lemma.

Lemma 2.74
Let f ∈ Q[x] irreducible with prime degree p. Suppose f has exactly two non-real
roots. Then Gf

∼= Sym(p).

Proof. Let K be a splitting field of f . Let α be a root of f . [Q(α) : Q] = p. Moreover,
p = [Q(α) : Q] | [K : Q] = |Gf |. By Cauchy’s theorem, there is g ∈ Gf with order p, so
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g is a p-cycle. Moreover, complex conjugation is an automorphism that fixes all but 2
roots, so this is a transposition, so Gf

∼= Sym(p).

Lemma 2.75 (Polynomial with maximal Galois group)
Let p ≥ 5 be prime. Let n1 be a positive even integer and n2, . . . , np−1 be distinct even
integers. Let g(x) = (x2 + n1)(x − n2) · · · (x − np−1) ∈ Z[x] (all coefficients are even
except the leading one). Let

e := min
x,g′(x)=0

|g(x)|.

Suppose n is odd such that 2
n < e. Let f(x) = g(x)− 2

n . Then Gf
∼= Sym(p).

Proof. By construction, f still has p − 2 real roots. Then it suffices to show that f
is irreducible, which is the same as showing nf(x) = ng(x) − 2 is irreducible. This
is easy to do by Lemma 2.72. The only interesting thing to check is 4 - f(0). Since
g(0) = c2p−2 for some c ∈ Z, so nf(0) = ng(0)− 2 = c2p−2 − 2, so 4 - nf(0).

2.11.2. Dedekind’s theorem

We will use a restated version of the Chinese remainder theorem in this proof, which is as
follows. Let R be a commutative ring with maximal ideals I1, . . . , In, then if r1, . . . , rn ∈ R,
there exists b ∈ R such that b − ri ∈ Ii for all i. Since we are working with a field Q, it
has no interesting ideals, so the idea with Dedekind’s theorem is to consider the integers
instead and look at its prime/maximal ideals.

Recall that a permutation σ ∈ Sym(n) has cycle of type (k1, . . . , k`), where
∑

i ki = n if
it is a product of disjoint cycles of length k1, k2, . . . , k`. For example, (1)(23)(456) ∈ Sym(6)
is a (1, 2, 3)-cycle.

Theorem 2.76 (Dedekind’s theorem)
Let f ∈ Z[x] be monic, and let p be prime. Suppose f is separable and f =

∏r
i=1 fi is

its prime factorization. Then Gf has a cycle of type (deg f1, . . . , deg fr).

Proof. Let F be a splitting field of f . Let α1, . . . , αm be the roots of f . Then F =
Q[α1, . . . , αm]. We shift to looking at the ring

A = Z[α1, . . . , αm] ⊆ OF .

Note that
OF
∼= Z[F :Q]

as Z-modules. Let P be the maximal ideal of A that contains (p) = pZ. Define E :=
A/P , a field containing Fp.

Given a ∈ A, let ã be its image in E. So E = Fp[α̃1, . . . , α̃m]. Since a 7→ ã is a ring
homomorphism, α̃i is still a root of f , so E is a splitting field of f ∈ Fp[x]. Since f is
separable, this extension is Galois.

Let G = Gal(E/Fp). Define DP to be the set of field automorphisms in Gf that fix
P :

DP := {σ ∈ Gf | σ(P ) = P} ⊆ Gf ⊆ Sym({α1, . . . , αm}).

Since σ(P ) = P if σ ∈ Dp, it descends to a ring homomorphism σ̃ : E → E.
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So there exists a group homomorphism

φ : DP → Gal(E/Fp) = 〈σp : x 7→ xp〉
σ 7→ σ̃

Moreover, it is injective because each σ ∈ DP permutes the roots, so if φ(σ) = idE ,
then σ = idF .
Claim 2.6. φ is an isomorphism.

Proof. By the primitive element theorem, E = Fp[ã] for some a ∈ A. By the
Chinese remainder theorem, there exists b ∈ A such that b − a ∈ P and for all
σ /∈ Dp, b ∈ σ(P ) =⇒ σ−1(b) ∈ P =⇒ σ̃(b) = 0. Hence, ã = b̃. Let

h(x) :=
∑
σ∈Gf

(x− σ(b)) ∈ Z[x].

So

h(x)︸︷︷︸
∈Fp[x]

=
∑
σ∈Gf

(x− σ̃(b)) = x|Gf−Dp|

deg≤|Dp|︷ ︸︸ ︷∑
σ∈Dp

(x− σ̃(b)) .

Notice that if mb̃(x) ∈ Fp[x] is the minimal polynomial of b̃, then

|Gal(E/Fp)| = [E : Fp] = degmb̃ ≤ |Dp| ≤ |Gal(E/Fp)| . �

To finish the proof, note that the Frobenius automorphism σp : x 7→ xp cyclically
permutes the roots of fi for all i. So the corresponding element in Dp has a cycle of
type (deg f1, . . . , deg fn).

Example 2.77 – Find Gf ⊆ Sym(5), where f(x) = x5 − x− 1.
• f reduces mod2 to f = (x2 + x+ 1)(x3 + x2 + 1). This implies Gf has a (2, 3)-cycle. Up

to renaming elements, we can write it as (12)(345).
• Suppose f is reducible mod3. Then its reduction, f ∈ F3[x] has a linear or quadratic

factor. The product of all degree 1 and 2 irreducible polynomials in F3[x] is x32 − x by
Corollary 2.28. Since gcd(x5−x−1, x9−x) = 1, there are no quadratic or linear factors.
This implies Gf has a 5-cycle.

((12)(345))3 = (12), so Gf has a transposition and a 5-cycle. Hence, Gf = Sym(5).

2.12. Insolvability of the quintic
November 30,

2023
Recall that N E Gal(F/k) ⇐⇒ N/k is Galois. We may generalize this to a descending
normal sequence.

Corollary 2.78
1 E N1 E · · · E Gal(F/k) has a bijection to F ⊇ F1 ⊇ · · · ⊇ k, where Fi+1/Fi is Galois.
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Lemma 2.79 (Linear independence of characters, Dedekind)
Let G be a group and let F be a field. A character of G is a group homomorphism
χ : G→ F×. If distinct characters χ1, . . . , χn satisfy

∑n
i=1 aiχi = 0 (as a function), and

a1, . . . , an ∈ F , then a1 = · · · = an = 0.

Proof. Induct on n. n = 1 is clear. Let g ∈ G such that χ1(g) 6= χi(g) for some i.
Suppose that

∑
i aiχI(x) = 0. Then∑

i

aiχi(gx) = 0 =⇒
∑
i

aiχi(g)χi(x) = 0.

By multiplying by χ1(g)
−1, we have

a1χ1(x) + a2χ1(g)
−1χ2(g)χ2(x) + · · ·+ anχ1(g)

−1χn(g)χn(x) = 0.

Now take the difference of this with
∑n

i=1 aiχi = 0 to find

a2(χ1(g)
−1χ2(g)− 1)χ2(x) + · · ·+ an(χ1(g)

−1χn(g)− 1)χn(x) = 0.

So a2 = · · · = an = 0 by the inductive hypothesis. So a1χ1 = 0 =⇒ a1 = 0 as well.

Lemma 2.80
Let n > 0. Suppose k is a field with a primitive nth root of unity. Let F/k be a degree
n Galois extension. Then Gal(F/k) ∼= Z/n ⇐⇒ F = k(α) where α ∈ F such that
there is an a ∈ k such that αn = a, but αm /∈ k for 0 < m < n.

Proof. ( =⇒ ) Let Gal(F/k) = 〈σ〉.
Claim 2.7. It suffices to find α ∈ F such that σ(α) = ζ−1α.

Proof. Note that σ2(α) = σ(ζ−1α) = ζ−2α and σm(α) = ζ−mα. So σm sends α to
itself if and only if n | m, i.e. only the identity in Gal(F/k) fixes α. So F = k(α).
Moreover, degmα = n. Roots of mα are σm(α) = ζ−mα, so

mα =

n−1∏
i=1

(x− ζiα) = xn − αn ∈ k[x].

So αn ∈ k. No smaller αm is in k because degmα = n. �

Notice that F× is a group and σk : F× → F× are distinct characters for 0 ≤ k ≤ n− 1.
Therefore,

∑n−1
i=0 ζ

iσi is not the zero function. Suppose therefore that γ is some input
so that

α = γ + ζσ(γ) + · · ·+ ζn−1σn−1γ 6= 0.

Therefore,
σ(α) = σ(γ) + ζσ2(γ) + · · ·+ ζn−1γ = ζ−1α.

( ⇐= ) Suppose F = k(α), where α = n
√
a for a ∈ k. Moreover, suppose αm /∈ k for

any 0 < m < n. Since F/k is a degree n extension, degmα = n, so mα = xn − a. The
roots of mα are ζiα. Let σ ∈ Gal(F/k) such that σ(α) = ζα. Then σ2(α) = ζ2α 6= α.
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Similarly, we see that σm(α) = α ⇐⇒ n | m. So the order of σ is n, so σ generates
the Galois group.

Definition 2.22
A group G is solvable if there exists 1 E N1 E · · · E G such that Ni+1/Ni is cyclic or,
equivalently in this case, abelian.

Proposition 2.81
Quotients and subgroups of solvable groups are solvable.

Example 2.82 (Nonexamples of solvable groups) – An and Sym(n) are not solvable for n ≥ 5.

Definition 2.23
A radical tower starting at k1 is k1 ⊆ · · · ⊆ km such that ki+1 = ki( ni

√
ai) for ai ∈ ki. A

polynomial f ∈ k[x] is solvable by radicals if there exists a radical tower starting at k
such that all roots of f belong to km.

Theorem 2.83 (Galois solvability theorem)
Let f ∈ k[x], where k is a characteristic zero field. Let K be a splitting field of f over
k. Let Gf := Gal(K/k). Then Gf is solvable ⇐⇒ f is solvable by radicals.

Proof. ( =⇒ ) Let N = (deg f)!. Let ζ be a primitive Nth root of unity. Let F = k(ζ).
Let L be a splitting field of f over F .
Claim 2.8. Gal(L/F ) is solvable, since it can be identified with a subgroup ofGal(K/k).

Proof. Let α1, . . . , αm be roots of f in L. So K = k(α1, . . . , αm). So Gal(L/F )
permutes the roots of f , so each element of Gal(L/F ) sends K to itself. This
gives us a restriction

Gal(L/F ) Gal(K/k)

Sym(roots of f)

Res

�

Because Gal(L/F ) is solvable, there exists sequence

1 E N1 E · · · E Nm = Gal(L/F ),

which is in bijection with

L ⊇ F1 ⊇ · · · ⊇ Fm = F = K(ζ) ⊇ K

such that Ni+1/Ni is cyclic. Then applying Lemma 2.80, f is Solvable by radicals.
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(⇐= ) By assumption, K is contained in the final field of a radical tower. It suffices
to show that K ⊆ E where E is a Galois extension of k such that Gal(E/k) is solvable,
because Gf = Gal(K/k) = Gal(E/k)/Gal(E/K), and quotients of solvable groups are
solvable.
K ⊆ K(α1) ⊆ · · · ⊆ K(α1, . . . , αm) =: L, where αi = ri

√
ai with ai in the ith field in

the sequence. Let E be the splitting field of mα(x)(x
N − 1), where N = r1 · · · rm.

Let G = Gal(E/k) = {g1, . . . , g`}.

K
ab.
⊆ K(ζN )

cyc.
⊆ K(ζN , α1)

cyc.
⊆ K(ζN , g1(α1), α1)

cyc.
⊆ · · ·

cyc.
⊆ K(ζN ,

G·α1︷ ︸︸ ︷
g1(α1), . . . , γ`(α1))

cyc.
⊆ K(ζN , G · α1, α2)

cyc.
⊆ · · ·

cyc.
⊆ K(G · α1, G · α2)

cyc.
⊆ · · ·

cyc.
⊆ K(G · α1, . . . , G · αm) = E.

As a result, K is solvable.

Example 2.84 – We showed that f(x) = x5 + x + 1 has Gf = Sym(5), so its roots are not
expressible by adjoining successive roots to Q.

Remark 2.85. There is a real analytic function that inputs coefficients of a quintic and
outputs its roots.

2.13. The Artin-Schreier theorem
December 5,

2023
We would like to be able to say more about the algebraic closure of a field beyond “it exists
and is unique.” The following theorem establishes a classification of algebraic closures
for field with characteristic zero and finite degree closures, with the prototypical example
being R = C.

Theorem 2.86 (Artin-Schreier)
Let k be a field with characteristic 0. If the algebraic closure F of k is a finite extension
of k, then [F : k] = 2 and F = k(i).

Most of the work was done on the worksheet through the following lemma:

Lemma 2.87
Suppose that F = k is a degree p extension for a prime p over a characteristic 0 field
L. Then p = 2.

Proof. The following sequence of claims will prove that p = 2.
Claim 2.9. ζp ∈ L.

Proof. [L(ζp) : L] = degmζp ≤ degΦp = p− 1 < p. Since F is a Galois extension
of degree p, Gal(F/L) ∼= Z/p. The only proper subfield of F contained in L is L,
so L(ζp) = L. �

Note that by Lemma 2.80, F = L( p
√
a) for some a ∈ L. Let b be an element such that

bp = p
√
a. The Galois conjugates of b are some roots of xp2 − a = 0, so we have a form

for any σ ∈ Gal(F/L).
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Claim 2.10. Let σ(b) = ζmp2b for some integer m. Then ζmn
p2

p
√
a ∈ L for some n. More-

over, p - m.

Proof. Let σ(ζp2) = ζ`p2 for some integer `. Then by induction, we can show that
σk(b) = ζ

(∗)m
p2 b, where ∗ is some integer. The constant term of mb ∈ L[x] is the

product of the Galois conjugates of b, i.e.

ζm·n
p2 bp = ζm·n

p2
p
√
a.

Suppose p | m. Write m = kp, so(
ζpp2

)
︸ ︷︷ ︸
∈L

kn

· p
√
a ∈ L =⇒ p

√
a ∈ L,

a contradiction. �

Claim 2.11. σ(ζp2) = ζp2ζcp for some integer c.

Proof. Since ζp ∈ L, σ ∈ Gal(F/L) fixes ζp. Let σ(ζp2) = ζ`p2 for some ` ∈ Z. Then

ζp = σ(ζp) = σ(ζpp2) = σ(ζp2)p = ζp`p2 = ζ`p.

Hence, ` is congruent to 1 modulo p, from which the result follows. �

Let p be an odd prime. Then p | 1 + 2 + · · ·+ (p− 1). Therefore,

b = σp−1 ◦ σp−2 ◦ · · · ◦ σ(b) = ζp−1
p2 ζ(∗)p b,

a contradiction.

We now continue to the proof of Artin-Schreier.
Proof of Theorem 2.86. By the previous lemma, we just need to prove that the de-
gree of the extension is always of degree 2. Let G = Gal(F/k). Suppose p | |G|. Then
G contains a subgroup H := 〈x〉 of size p. Let L = FixH(F ). F is the algebraic closure
of L and [F : L] = [H : {id}] = p. So p = 2 and |G| = 2k for some k.

For contradiction, we suppose k ≥ 2. If |G| 6= 2, then either there is an x ∈ G such
that ord(x) = 4 and H = 〈x〉 ∼= Z/4, or there do not exist x ∈ G that are of order 4,
hence every element is of order 2, so G ∼= (Z/2)k and we can find a subgroup H ≤ G
such that H ∼= (Z/2)2. As a result, we have found an order 4 subgroup.

Let L be the fixed field of H. There exists an intermediate field E (by the Galois
correspondence) such that L ⊆ E ⊆ F , and [L : E] = [E : F ] = 2. By the lemma,
F = E(i). Let M = L(i). Applying the lemma again, F =M(i) = L(i)(i) = L(i) =M .
But F is a degree 4 extension and M is a degree 2 extension over L, a contradiction.
So |G| = 2, and by the lemma, F = K(i).

2.14. Jordan-Chevalley
December 7,

2023
We now cover the final theorem of this class, which brings together ideas from mod-
ule theory and field theory together to solve an issue we faced before: Jordan canonical
form did not work when the eigenvalues did not belong to the field the vector space was
over.
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Definition 2.24
Let U,W ⊆ V be k-vector spaces. Then V = U⊕W if any of the equivalent definitions
hold.

1. ∀v ∈ V , there exists unique u ∈ U , w ∈W such that v = u+ w,

2. V = U +W and U ∩W = {0},

3. V = U +W and dimU + dimW = dimV .

Definition 2.25
Let k be a field and V a finite dimensional k-vector space. Let A : V → V be a linear
map. A is semisimple if for all A invariant subspaces W ⊆ V , there exists an A-
invariant subspace U ⊆ V such that V decomposes as V =W ⊕ U .

A is simple if the only A-invariant subspace are 0 and V . Note that V is simple implies
A is simple (hence semisimple).

We will now discuss several equivalent definitions of semisimple, which we will use to
prove the Jordan-Chevalley theorem.

Lemma 2.88
Let V = k[x]/(pn) where p ∈ k[x] is prime and n ∈ Z>0. Let A : V → V be given by
A(f) = xf . Then A is semisimple ⇐⇒ n = 1.

Proof. A-invariant subspaces of V are k[x]-submodules, i.e. I/(pn) where I ⊆ k[x] is
an ideal that contains (pn). I = (q) for some q =⇒ q | pn =⇒ q = pk for 0 ≤ k ≤ n.

If n = 1, there exist two invariant subspaces, so A is simple. If n > 1, (p)/(pn) is
a proper invariant subspace that contains all other invariant subspaces. So there is
not a complementary subspace.

Lemma 2.89 (Semisimple restriction)
Let A : V → V be semisimple. Let W ⊆ V be A-invariant. Then A|W is semisimple.

Proof. Let V =W⊕U , whereW , U areA-invariant, be the decomposition guaranteed
by the definition of semisimple. Let W1 ⊆ W be A-invariant. Since A is semisimple,
there exists W2 such that V = (W1 ⊕ U)⊕W2. Let

πW : V →W

be the projection onto W . Then W = πW (V ) =W1+πW (W2). To show this is a direct
sum,

dimW = dimW1 + dimW2 ≥ dimW1 + dimπW (W2),

which implies equality, so W =W1 ⊕ πW (W2).

Lemma 2.90
Let A : V → V . Then A is semisimple ⇐⇒ V =

⊕
i Vi, where each Vi are A-invariant

and simple.
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Proof. Induct on dimV .
( =⇒ ) Let A be semisimple. If V is semisimple, we are done. Otherwise, write

V =W1⊕W2 forA-invariant subspacesW1,W2 andA|Wi
is semisimple. By induction,

V =
⊕

iW1i ⊕
⊕

j W2j .
(⇐= ) If V is simple, then we are done. Let

V = V1 ⊕ W︸︷︷︸
=
⊕

i>0 Vi

,

where V1 is A-invariant and simple and W is A-invariant. Let U ⊆ V be an A-
invariant subspace. Let U ′ be an A-invariant complement of πW (U) in W , so W =
πW (U)⊕ U ′.

If U ∩ V1 = 0, then the invariant complement is just V1 ⊕ U ′. If U ∩ V1 = V1, then
the invariant complement is U ′.

Lemma 2.91
Let A : V → V . A is semisimple ⇐⇒ its minimal polynomial is squarefree.

Proof. By the elementary divisor theorem, as a k[x]-module,

V =
⊕
i

k[x]/(peii )︸ ︷︷ ︸
=:Vi

for prime polynomials pi and integers ei > 0. A is semisimple ⇐⇒ A|Vi
is semisimple

for all i ⇐⇒ ei = 1 ⇐⇒ mA is squarefree.

Definition 2.26
A field k is perfect means if char(k) = p, then either p = 0 or p > 0 and for all a ∈ k,
there exists b ∈ k such that a = bp.

Recall if k is perfect, then any irreducible polynomial is separable. Equivalently, p ∈ k[x]
is squarefree ⇐⇒ p is separable. Moreover, any splitting field L/k over a perfect field k
is Galois.

Example 2.92 – Given A =

[
1 1
0 1

]
: Q2 → Q2. But AR =

[
1 1
0 1

]
: R2 → R2 and AC =[

1 1
0 1

]
: C2 → C2 also are well-defined maps. We summarized before the extension of scalars

that we can perform: ifA : V → V is a linear map of k-vector spaces andL/k is a field extension,
then AL := A⊗k id is a linear map from VL := V ⊗k L to itself given by the same matrix.
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Lemma 2.93
Let k be perfect and let V be a k-vector space. Let A : V → V . The following are
equivalent:

1. A is semisimple,

2. mA ∈ k[x] is squarefree,

3. mA is separable.

If L/k is a field extension then AL is semisimple ⇐⇒ A is semisimple.
If L/k contains the splitting field of mA, A is semisimple ⇐⇒ AL diagonalizable.

Definition 2.27
Let A : V → V . A is nilpotent if there exists m > 0 such that Am = 0.

Lemma 2.94
1. If A,B : V → V that commute with each other and are both semisimple (resp.

nilpotent), then A+B is semisimple (resp. nilpotent),

2. The only semisimple and nilpotent linear map is 0.

Proof. (1) For semisimplicity, there exists a field L/k such that AL and BL are diag-
onalizable. Commuting diagonalizable matrices are simultaneously diagonalizable.
For nilpotency, suppose there existsN such that AN = BN = 0. Then by the binomial
theorem,

(A+B)2N =
∑

i+j=2N

(
2N

i

)
AiBj = 0.

(2) If A is semisimple and nilpotent, then there is a field L/k such that AL is diag-
onalizable. But the only diagonalizable and nilpotent matrix is 0.

Theorem 2.95 (Jordan-Chevalley)
Let k be perfect and let V be a k-vector space. Let A : V → V be a linear map. Then
there exist unique polynomials p, q ∈ k[x] such that A decomposes into a sum of a
semisimple and nilpotent map.

A = p(A)︸︷︷︸
semisimple

+ q(A)︸︷︷︸
nilpotent

.

Remark 2.96. Recall in Jordan canonical form, we wrote a matrix A, up to conjugation,
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as

BAB−1 =



λ1 1

. . .
. . .
. . . 1

λ1

λ2 1

. . .
. . .
. . . 1

λ2

. . .


=



λ1

. . .
. . .

λ1

λ2

. . .
. . .

λ2

. . .


︸ ︷︷ ︸

semisimple

+



0 1
. . .

. . .

. . . 1
0
0 1

. . .
. . .
. . . 1

0
. . .


︸ ︷︷ ︸

nilpotent

.

Proof of Theorem 2.95. We first show uniqueness. Suppose p(A) + q(A) = p̃(A) +
q̃(A). Then p(A)− p̃(A)︸ ︷︷ ︸

semisimple

= q(A)− q̃(A)︸ ︷︷ ︸
nilpotent

. The only semisimple and nilpotent linear

map is 0 (exercise), so p(A) = p̃(A) and q(A) = q̃(A).
Let L be a splitting field of mA. This is a Galois extension. Then by Jordan canon-

ical form, we can write

AL =



λ1 1

. . .
. . .
. . . 1

λ1

λ2 1

. . .
. . .
. . . 1

λ2

. . .


Let χA =

∏
i(x − λi)

di ∈ L[x]. Then VL =
⊕

i Vi, where Vi = ker
(
(AL − λiI)di

)
.

By the Chinese remainder theorem, there exists a polynomial p(x) ∈ L[x] such that
p(x) ∼= λi mod (x− λi)di for all i. Equivalently, we can write p(x) = λi+gi(x)(x−λi)di

for some gi ∈ L[x] for all i.
Let v ∈ Vi. p(A) · v = λiv + gi(AL)(AL − λiI)di · v = λiv. So p(A) is diagonalizable.

Define g(x) = x − p(x). g(A)di = (AL − p(A)|Vi
)di = (AL − λiI)di · v = 0, so g(x) is

nilpotent. Moreover, AL = p(AL) + g(AL).
We need to prove that p(x) (which we defined to be in L[x]) actually has coefficients

in k. Let σ ∈ Gal(L/k). Note A = p(A)+ q(A). Note A ∈ MatdimV×dimV (k), so Aσ = A.

A = Aσ = p(A)σ︸ ︷︷ ︸
semisimple

+ q(A)σ︸ ︷︷ ︸
nilpotent

= pσ(A) + qσ(A).

By uniqueness, pσ(A) = p(A) and qσ(A) = q(A). By the classification of L[x] modules,
we have

VL ∼=
⊕
i

L[x]/(di),

where d1 | · · · | dm are the invariant factors, where A acts by multiplication by x. So
p(A) acts by multiplication by p(x). But multiplication by p(x) is multiplication by
pσ(x), so p(x) = pσ(x) and q(x) = qσ(x) for all σ ∈ Gal(L/k). So p, q ∈ k[x].
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