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1. Introduction

Swan’s theorem establishes a module struc-
ture on the set of smooth sections over a vec-
tor bundle π : E → M .

This allows us to study algebra by means
of vector bundles and vice-versa. We con-
clude with an introductory result in K-
theory that follows from this theorem.

2. Projective modules

Recall that given a ring R, an R-module is an
abelian group M together with an R-action
R y M . Effectively, an R-module is the
ring theory equivalent of a k-vector space for
a field k. In fact, a k-module is a k-vector
space.

A set S = {eα}α ⊆ M is a generating set if
the smallest submodule containing S is M .
If M has a finite generating set, it is finitely
generated.

An R-module M is a free if it has a linearly
independent spanning set {eα}α ∈ M .

Example 2.1 –

Zn := {(x1, . . . , xn) | x1, . . . , xn ∈ Z}

is a free Z-module.

Definition 2.1. Let P be an R-module. P
is a projective module is any of the following
equivalent definitions hold:

1. There exists an R-module Q such that
P ⊕Q is free,

2. For any surjective R-module homomor-
phism f : N � M and R-module homo-

morphism g : P → M , there exists an
R-module homomorphism h : P → N
such that f ◦ h = g, i.e. the diagram

N

P Mg

f∃h

commutes.

Informally, this makes projective modules
the “next best thing” to free modules.

Example 2.2 – IfP is a freeR-module, then
since P ⊕ {0} is free, by definition (1), it is
projective. Therefore, all free modules are
projective.

3. Swan’s theorem

First note that the set of (global) C∞ sections
Γ(E) over a C∞ vector bundle π : E → M
forms aC∞(M)-module, since s+t and fs are
C∞ sections for s, t ∈ Γ(E) and f ∈ C∞(M)
[Tu10, Proposition 12.9].

Theorem 3.1 (Swan’s theorem). If π : E →
M is a smooth vector bundle, then Γ(E) is
a finitely-generated and projective C∞(M)-
module. If M is connected, the converse
holds.

Swan’s theorem also has a clean state-
ment in the language of category theory.

Proposition 3.2 (Categorical Swan’s theo-
rem). Given a connected, smooth manifold
M , the smooth section functor Γ from the
category of smooth vector bundles over M to
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the category of finitely generated, projective
C∞(M)-modules

Γ: Vect(M) → C∞(M)Modpfg

is full, faithful, and essentially surjec-
tive. In other words, the two categories are
equivalent.

4. Applications

4.1. A projective but not free module

Example 2.2 illustrates that all free modules
are projective, but we have not shown the
converse. This example is from these notes
with more details in the proof.

We start by noting that by Swan’s theo-
rem, Γ(TS2), where TS2 is the tangent bun-
dle of the 2-sphere, is projective.

Given two vector bundles π : E → M ,
π′ : E′ → M , we can form a direct sum of
these vector bundles E ⊕ E′, called a Whit-
ney sum, by taking the pointwise direct sum
of its fibers Ep⊕E′

p (recall each fiber is a vec-
tor space).

Fact 4.1. For vector bundles π : E → M and
π′ : E′ → M , Γ(E ⊕ E′) ∼= Γ(E)⊕ Γ(E′).

Fact 4.2. A vector bundle π : E → M is the
trivial bundle (i.e. isomorphic to M×RdimM )
if and only if Γ(E) is free.

Note that TS2 is not a trivial bundle (a con-
sequence of the hairy ball theorem), hence
Γ(TS2) is projective but not free.

We can take this further. A module P is
stably free if there is a free module F such
that P ⊕ F is free. By the first definition of
projective module, any stably free module is
projective.

Proposition 4.3. TS2⊕R ∼= S2⊕R3 as vector
bundles.

Proof from [eEhee]. Viewing S2 as a surface
in R3, we can write TS2 as all orthogonal vec-
tors of S2 [Tu10, Problem 11.1]

TS2 =
{
(x,v) | 〈x,v〉 = 0,x ∈ S2,v ∈ R3

}
.

We can write any vector w ∈ R3 as the sum of
a sum of vectors tangent and normal to the
sphere, so there is a map

S2 ⊕ R3 → TS2 ⊕ R
(x,v) 7→ (x,v − 〈v,x〉x, 〈x,v〉).

This map is bijective and smooth, hence
these vector bundles are isomorphic.

Now we note that

Γ(TS2)⊕ Γ(R) ∼= Γ(S2)⊕ Γ(R3)︸ ︷︷ ︸
free

.

So Γ(TS2) is a stably free module that is not
free.

4.2. The start of K-theory

K-theory is the study of groups formed over
other algebraic structures. It has found ap-
plications in string theory and in finding
topological invariants (such as the Chern
character) [nLa23].

Two branches of K-theory are topological
K-theory and algebraic K-theory. They both
rely on the Grothendieck completion of an
abelian monoid (i.e. an abelian group drop-
ping the assumption that elements are in-
vertible).
Definition 4.1. Given an abelian monoid
(M,+), we can form the Grothendieck
group/completion of M as the “smallest”
(as in, it satisfies some universal property)
abelian group A that can be formed out of
M .

We construct the Grothendieck completion
by creating the product monoid M2 = M×M
with an equivalence

(a1, a2) ∼ (b1, b2)

if there exists c ∈ M such that

a1 + a2 + c = b1 + b2 + c.

We use the following notation for the equiv-
alence classes:

[a]− [b] := [a, b],

[a] := [a, 0],

−[b] := [0, b].
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Example 4.4 – N0 = {0, 1, . . .} is an abelian
monoid under addition. The Grothendieck
completion of N0 is (up to isomorphism) Z.

The set of all vector bundles over a man-
ifold M become an abelian monoid under
Whitney sums ⊕.

The Grothendieck completion of this
abelian monoid is called the K-theory of M ,
denoted K0(M).

Motivated by Swan’s theorem, we can also
define the K-theory of a ring R. Con-
sider the set of finitely generated projec-
tive R-modules over some ring R. They
form an abelian monoid under direct sums.
We then let the K-theory of R, K0(R), be
the Grothendieck completion of this abelian
monoid.

This means that topological K-theory is
just a subset of algebraic K-theory (only look-
ing at the case where R = C∞(M)).

The field of K-theory also analyzes the
higher Kn, Kn groups, which are beyond the
scope of this paper.
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