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1 Groups Pramana

1. Groups

1.1. Basics
Groups are related to the symmetries of objects.September 04,

2024

Example 1.1 (Familiar groups) –

1. Symmetry groups:

Sn := {bijections {1, . . . ,n}→ {1, . . . ,n}} .

2. Dihedral groups: Dn.

3. Cyclic groups: Z/nZ.

4. General linear groups: GLn(R), GLn(C); invertible n× nmatrices.

1.1.1. Subgroups

Given a group G and a subset S, the subgroup generated by S is (1) the smallest subgroup
containing S, or (equivalently, but requiring a proof) (2) the intersection of all subgroups con-
taining S. We denote the subgroup generated by S as 〈S〉.

Example 1.2 – In S5 consider the elements a = (12345) and b = (12). What is 〈a,b〉?
To compute the subgroup, we can’t really use the definitions. We just need to take

products of a and b (loosely, 〈a,b〉 =
{
aα1bβ1 · · ·aαnbβn | αi,βi ∈ Z,n ≥ 0

}
). It’s still

hard to get the answer (S5) in practice.

Example 1.3 – In S5 consider the elements a = (12345) and b = (12)(35). What is 〈a,b〉?
Here, we can draw a picture of a pentagon and imagine what the element a and b do

to the vertices. We notice that they represent a reflection and a rotation, so we know the
subgroup is isomorphic to D10.

1.1.2. Cosets and quotients

Let G be a group and H ≤ G. G/H is the quotient of H in G. We define

G/H := {cosets of H in G} .

Recall that a (left) coset of H in G is gH := {gh | h ∈ H} ⊆ G. A right coset is defined by
Hg := {hg | h ∈ H}.1 So G can be either split into left or right cosets, with (at least) H as a left
and right coset.

If H is normal, i.e. gHg−1 = H for all g ∈ G, then G/H is actually a group.

Proposition 1.1
There are the same number of left and right cosets.

1Another way to define left (resp. right) is by the equivalence relation a ∼ b if a−1b ∈ H (resp. a ∼ b if ba−1 ∈ H).
3



1.2 Quotients and homomorphisms Pramana

Proof. This follows from the fact that (gH)−1 = Hg−1. We are essentially taking the
bijective anti-homomorphism1 x 7→ x−1 and showing it descends to a bijection between
the left and right cosets:

G G

G/H H \G

x 7→x−1

bij.

1A function between groups ϕ : G→ H is an anti-homomorphism if ϕ(ab) = ϕ(b)ϕ(a).

The index of H in G, denoted [G : H], is the number of (left/right) cosets of H in G, i.e.
|G/H|.

Proposition 1.2
The following are equivalent:September 06,

2024
1. H E G,

2. left and right cosets coincide,

3. (g1,g2) 7→ g1g2 is a well-defined map from G/H×G/H to G/H.

Remark 1.3 (“French style”). The last statement is equivalent to the existence of a unique
homomorphism on the bottom of the following diagram that makes it commute

G×G G

G/H×G/H G/H

(g1,g2) 7→g1g2

?

1.2. Quotients and homomorphisms
If ϕ : G→ H is a group homomorphism, let kerϕ = {g ∈ G : ϕ(g) = e}.

Theorem 1.4 (First isomorphism theorem)
Let ϕ : G→ H be a group homomorphism. Then

ϕ(G) ∼= G/ kerϕ.

Remark 1.5. We implicitly assumed that (1) ϕ(G) is a group, (2) kerϕ is a normal subgroup,
and (3) ϕ induces an isomorphism between the two sides.

G H

G/ kerϕ ϕ(G)

ϕ

∪
∼

4



1.3 Symmetric groups Pramana

Example 1.4 (Simple application of Theorem 1.4) – If |G| and |H| are coprime, then the
only homomorphism ϕ : G→ H is ϕ ≡ e.

Theorem 1.6 (Second isomorphism theorem)
Let G be a group and let N be a normal subgroup and K a subgroup. Then

KN/N ∼= K/(K∩N).

Remark 1.7. We have more implicit assumptions here: (1)K∩N is normal, (2)KN = {ab | a ∈ K,b ∈ N}

is a subgroup, (3) N is normal in KN (4) how we define the isomorphism.
(1) is easy to show. (2) is because KNKN = KKNN = KN (using normal subgroup proper-

ties). Note that KN = NK = 〈K∪N〉 =: K∨N.

Proof of Theorem 1.6 (sketch). We check that the group homomorphismK→ G/N : a 7→
a ·N has kernel K ∩N, and then prove that KN/N is the image. Then we apply Theo-
rem 1.4 to finish.

Theorem 1.8 (Third isomorphism theorem)
Given H,K E G and K ⊆ H,

G/H ∼= (G/K)/(H/K).

Theorem 1.9 (Fourth isomorphism theorem)
Given K E G, there is a bijection preserving normality{

subgroups of
G/K

}
∼
−→ { subgroups of

G containing K

}
H̃ 7→ π−1(H̃)

π(H) = H/K←[ H

Remark 1.10. Now that we are talking about isomorphisms, it is worth explaining that these
notes will write “=” for isomorphism. Whenever this happens, we mean that there it is “nat-
ural” in some sense.

The idea is that these equalities will not require a choice of elements in the group (or rings,
modules, etc. later). We could also explain this via the categorical language of natural trans-
formations later.

1.3. Symmetric groups
September 09,

2024
Let n ∈ N. The symmetric group Sn (or Σn) consists of all permutations (f : {1, . . . ,n} →
{1, . . . ,n} such that f is bijective). A cycle of length k (i1i2 · · · ik) is a permutation such that
ij 7→ ij+1 (mod k). A transposition is a cycle of length 2. Note that |Sn| = n!.

Lemma 1.11
Any σ ∈ Sn can be written as the product of transpositions.

5



1.3 Symmetric groups Pramana

Definition 1.1
A permutation σ ∈ Sn is called even if it can be written as a product of an even number
of transpositions, and odd otherwise.

Theorem 1.12 (Even/odd is well defined)
Every permutation is even or odd, but not both.

If we assume the theorem is true, then we may define

sgn(σ) :=

{
−1 if σ is odd,
+1 if σ is even.

The map sgn : Sn → ({−1,+1} , · ) ∼= Z/2 is a group homomorphism. When n > 1, there are
odd permutations, so sgn is surjective. Define

An := ker(sgn) E Sn,

which we call the alternating group.
Given a permutation σ ∈ Sn, it will be helpful to use the following quantity: ∆(σ) =∏
j<k(ij − ik). For example,

∆

(
1 2 3
2 1 3

)
= (2− 1)(2− 3)(1− 3) = 2,

∆

(
1 2 3
2 3 1

)
= (2− 3)(2− 1)(3− 1) = −2.

Proof of Theorem 1.12. Let

σ =

(
1 2 · · · n
i1 i2 · · · in

)
.

Notice that for all σ ∈ Sn, ∆(σ) will be ±k for some fixed k (in particular, it is nonzero).

Claim 1.1. If δ is the transposition (cd) (with c < d), then

∆(δσ) = −∆(σ).

If we prove this claim, then we are done because ∆(σ) 6= 0 and if σ were both even
and odd, then we could write

σ = τ1 · · · τk = τ ′1 · · · τ ′`

for k even and ` odd, then

∆(σ) = (−1)k∆(id), ∆(σ) = (−1)`∆(id).

But this means ∆(id) = −∆(id), which means ∆(id) = 0, which is a contradiction.

6



1.3 Symmetric groups Pramana

Proof of Claim 1.1. We have

σδ =

(
1 · · · c · · · d · · · n
i1 · · · id · · · ic · · · in

)
.

So

∆(σ) =

∏
j=c
k=d

(ij − ik)


︸ ︷︷ ︸

H

∏
j 6=c
k 6=d

(ij − ik)


︸ ︷︷ ︸

A

∏
j<c
k=d

(ij − id)


︸ ︷︷ ︸

B

 ∏
c<j<d
k=d

(ij − id)


︸ ︷︷ ︸

C

 ∏
j=c

c<k<d

(ic − ik)


︸ ︷︷ ︸

D∏
j=c
d<k

(ic − ik)


︸ ︷︷ ︸

E

∏
k=c
j<k

(ij − ic)


︸ ︷︷ ︸

F

∏
j=d
j<k

(ij − ik)


︸ ︷︷ ︸

G

= (−H)(A)(F)(1)d−c−1D(−1)d−c−1CGBE

= −ABCDEFGH. �

So we are finished.

September 11,
2024

Another way to calculate sgn(σ) is to find the number of inversions:

#
{
(j,k) | j < k, ij > ik

}
.

Then sgn(σ) = (−1)#
{
(j,k)|j<k,ij>ik

}
.

Example 1.5 (Conjugation in Sn) – In the symmetric group, conjugation is something
like “re-indexing.” For example, considering r = (25)(34) and s = (12345) in S5, we
have that

rsr−1 = (15432),

because we changed 2 → 5, 3 → 4 in the labelling or s. This is because we expect rsr−1

to have the same properties as s.

Proposition 1.13
If σ = (i1 · · · ir) ∈ Sn and τ ∈ Sn, then τστ−1 is the cycle(

τ(i1) τ(i2) · · · τ(in)
)

.

Definition 1.2
A group is simple if it has no non-trivial ({e} and the group itself) normal subgroups.

Theorem 1.14
An is a simple group ⇐⇒ n 6= 4.

7



1.4 Product of groups Pramana

1.4. Product of groups
We know what a product is, but it is worth getting an alternate perspective through the lens
of abstract nonsense. In this case, we define the product A× B of sets to be a set with two
projection maps πA : A×B→ A, πB : A×B→ B satisfying the following universal property:
given a set C and maps f : C → A and g : C → B, there exists a unique map h : C → A× B
such that the following diagram commutes:

C

A× B A

B

∃!h
f

g

πA

πB

We can use this same universal property to define the product of groups: G×H. Instead
of functions of sets, we use functions of groups: G×H is a group combined with projection
homomorphisms πG : G×H×G, πH : G×H→ H such that for any group Lwith homomor-
phisms f : L→ G and g : L→ H, there exists a unique homomorphism k : L→ G×H making
the following diagram commute:

L

G×H G

H

∃!k
f

g

πG

πH

We know how to explicitly construct G×H: we let its underlying set be the set-theoretic
product G×Hwith operation

(g,h)(g ′,h ′) = (gg ′,hh ′).

Exercise 1.1. Prove thatG×H is a group (easy) and thatG×H satisfies the universal property
described above (slightly harder).

Exercise 1.2. Show that the product is unique up to isomorphism (in sets and groups). [Hint:
Show that the proposed isomorphism h composed with its proposed inverse k satisfies h ◦k =
id and k ◦ h = id. Use universal properties! If this is confusing now, it might become more
clear in subsection 3.1]

Remark 1.15. Let A be an arbitrary (possibly uncountably infinite) indexing set. Recall that
the arbitrary products of sets can be thought of as functions with a special property:

∏
α∈A

Aα =

{
f : A→ ⋃

α∈A
Aα | f(α) ∈ Aα

}
.

We can use universal properties to describe the arbitrary product of groups:
∏
α∈AGα.

1.5. Free groups
A “free” object conceptually represents an object without any relations (other than those given
by the axioms of the object).

8



1.5 Free groups Pramana

Let X be a set. A group Fwith a map (of sets) X→ F is said to be a free group on X if2, given
any other group H with a map of sets X → H, then there exists a unique homomorphism
F→ H such that the following diagram commutes:

X F

H

∃!

Example 1.6 (Free group on 1 element) – Let X = {1}. We claim the free group on X is
Z with the map X → (Z,+): 1 7→ 1. We will prove it is universal. Suppose we have a
group H with a map {1} → H : 1 7→ h. By constructing a map Z → H, we are forced to
have 0 7→ 0H and 1 7→ h, 2 7→ h2, etc.

1.5.1. Explicit construction

September 16,
2024

Elements of the free group on a set X, F = F(X) are strings (or words) of the form

g1 · · · gn, n ≥ 0,gi ∈ {x | x ∈ X}∪
{
x−1 | x ∈ X

}
.3

n = 0 gives you the identity in F. If we want a unique representation for every word, we need
reduced words, which never have x and x−1 adjacent. The group operation is concatenation:

(g1 · · · gn) · (g ′1 · · · g ′m) = g1 · · · gng ′1 · · · g ′m,

followed by reduction.
We have a second construction:

F =
{

strings xα11 · · · xαnn | xi ∈ X, xi 6= xi+1,n ≥ 0,αi ∈ Z \ {0}
}

.

Example 1.7 (Free group on 2 elements) – While F({1}) was easy, F on a 2 element set is
harder. Let X = {g,h}. Then

F =
{

strings xa11 x
a2
2 · · · xann | xi ∈ X, xi 6= xi+1,n ≥ 0,αi ∈ Z \ {0}

}
.

It’s easy to check that this definition satisfies the group axioms, except associativity, because
of the reduction after multiplication.

One can prove that F(X) satisfies the universal property we desired of the free group on X:

X F(X)

G

ι

f
f

We can imagine X goes into G to “represent” some elements of G. The elements in F(X) rep-
resent multiplying those elements of G together without the relationships between elements
defined in G, and fmeans “adding” the relations in G.

Since the elements of X does not really matter, we may instead use the cardinality of X to
describe a free group F|X|, e.g., F2.

2we could finish here by ending with “it is universal.”
3x−1 is just a symbol (completely different from x) for now; it doesn’t inherit and inverse structure from X if it was,

e.g., a group.
9



1.5 Free groups Pramana

Proposition 1.16
f is surjective ⇐⇒ 〈f(X)〉 = G.

Remark 1.17. It’s worth noting the philosophy of the last two constructions: we started with a
universal property of some sort and then created a set, group, etc. that satisfied this universal
property. In the case of free groups, it was relatively easy to state the universal property, but
hard to actually construct the group.

1.5.2. Relations

Example 1.8 – Let X = {A,B,C}, and G = F({g,h}).

X F(X)

F({g,h})

f
f

Suppose we send A 7→ ghg, B 7→ g2h2g2, C 7→ g3h3g3. Then

f(F(X)) =
〈
ghg,g2h2g2, . . .

〉
.

It turns out that ker f = {e}. This is counterintuitive because we have shown there is
a copy of F2 as a subgroup of F3, but also there is a copy of F3 as a subgroup of F2.
Moreover, one can show they are not isomorphic.

The relations on G leads to an isomorphism

G ∼= F(X)/N,

for some normal subgroup N. Informally, N is “adding the relations” to F(X).

Example 1.9 (Symmetric group) – Let Sn = 〈(12), (12 · · ·n)〉. Then we can think of some
isomorphism

F2/some normal subgroup ∼
−→ S2.

We know (12)(12) = id, so we would expect (12)2 to be in the normal subgroup above.

Example 1.10 (Dihedral group) –September 18,
2024

Suppose s, r ∈ D2n represent 2πn rotation and reflection
respectively. D2n is defined by the defining relations sn = e, r2 = e, rsr = s−1. Let
Y =
{
sn = e, r2 = e, rsr−1 = s−1

}
. In this case, we get a quotient of the free group on s

and r as
F({s, r})/ 〈Y〉 .

But 〈Y〉 is not necessarily normal. So instead we consider the normal subgroup gener-
ated by Y, which consists of conjugation of every element of Y by g ∈ F({s, r}):

Y ′ :=
〈
gYg−1 | g ∈ F({s, r})

〉
.

Now let’s prove that F({s, r})/Y ′ is isomorphic to Dn. It’s easy to check that Dn is
generated by {s, r}, and that the relations hold. But this doesn’t show an isomorphism

10
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yet.
We know that we have a map

F({s, r})→ Dn

by the universal property of the free group. It’s clear that the kernel of this map con-
tains Y ′. To show the other direction, we want to show that any relation in Dn be-
tween r and s is built out of relations in Y. This is more technical. To do this, we
will show that there is a canonical form of elements in F({s, r})/Y ′ (note that D2n ={
rαsβ | α = 0, 1,β = 0, 1, . . . ,n− 1

}
).

Consider an arbitrary element

rα1sβ1 · · · rαmsβm ∈ F({s, r}).

With rs = s−1r, we can bring the r’s to the left and get an element of the form

rαsβ.

Then we can use sn and r2 to show α = 0, 1 and β = 0, 1, . . . ,n− 1.

Definition 1.3
Given a set X of generators and Y ⊆ F(X) of defining relations, we may define a group

G = F(X)/
〈
gYg−1 | g ∈ F(X)

〉
=: 〈X | Y〉 .

Example 1.11 –September 20,
2024

Let X = {s1, . . . , sn−1}, where s2i = e, sisj = sjsi unless |i− j| = 1, and
sisi+1si = si+1sisi+1. It turns out this defines Sn by letting si 7→ (

i i+ 1
)
. The first

two properties are easy to check. The last property, the braid relation, is a little harder to
check, but is still true.

Dropping the s2i = e relation, we get the braid group.

Theorem 1.18 (Universal property)
Given X, Y ⊆ F(X), a groupH, and a map f : X→ H such that the relations Y are satisfied1.
Then there exists a unique homomorphism f : F(X)/

〈
gYg−1 | g ∈ F(X)

〉 → H such that
f(x) = f(x).

1Notice that f induces a map F(X) → H. Then we say that the relations Y are satisfied if Y ⊆ F(X) gets sent to
the identity by this map.

Remark 1.19. Universal mapping properties determine a group (up to isomorphism). Details
later.

1.6. Free products of groups
We would like to create a free group, but instead of a generating set X, we want it to be some
groups, and allowing elements of the same group to interact as normal.

11
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Theorem 1.20 (Universal property of free groups)
Let {Gi | i ∈ I} be a family of groups. Let F be a group with a family of homomorphisms
ιi : Gi → F. Consider a family of homomorphisms ψi : Gi → H to some group H, then
there exists a unique homomorphism ψ : F → H such that the following diagram com-
mutes

H

Gi F

ψi

ιi

∃!ψ

for all i ∈ I. In other words, F is the coproduct in the category Grp.

For example, with two groups G and H, we have the following diagram:

K

G F H

ψ1

ι1

∃!ψ
ψ2

ι2

This group F describes this “free group formed out of groups” structure we wanted at the
beginning of this section.

Definition 1.4
Given two groups G, H, we have an operation called the free product G ∗H. We define
it as

G ∗H = {g1h1 · · · gnhn | gi ∈ G,hi ∈ H, g1,hn can be e, the rest cannot,n ≥ 1} .

Another way to think about G ∗H is as the free group on G tH mod the relations given by
the group G and H. We also have

〈X1 | Y1〉 ∗ 〈X2 | Y2〉 = 〈X1 t X2 | Y1 ∪ Y2〉 .

Compared to the direct product G×H, G ∗H would need to add the relations gh = hg for
g ∈ G, h ∈ H, so it is “larger.”

12
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2. Structure of groups

2.1. Structure of abelian groups
For general groups, there is a difference between images and kernels of maps. They correspond
to subgroups and normal subgroups. A similar property happens for rings, giving us subrings
and ideals. Importantly, in abelian groups, these concepts coincide, because all subgroups are
normal.

Definition 2.1
The free abelian group on X is

F(X)ab := F(X)/
〈〈
xyx−1y−1

〉〉
.

F(X)ab =

{∑
x∈X

axx | all but finitely many/almost all ax are 0

}
⊆ ZX =

∏
x∈X

Z · x.

Another way to write the second set above is with the direct sum instead of the direct product:⊕
x∈X

Z · x = Z⊕X.

Every abelian group G is isomorphic to

F(X)ab/some subgroup.

This is a presentation by generators and relations.

Theorem 2.1 (Structure theorem of finitely generated abelian groups)
If G be a finitely generated abelian group, then

G ∼= Zn/

(
n⊕
i=1

riZ

)
, ri ∈ Z.

2.1.1. Subgroups of free abelian groups (of finite rank)

September 25,
2024

For the remainder of this section, “free group” refers to free abelian group. If G is any finitely
generated abelian group, then choosing some finite set of generators X ⊆ G, we have a sur-
jective homomorphism Z⊕X � G. This induces an isomorphism Z⊕X/H ∼

−→ G.

Theorem 2.2
For any subgroup H ⊆ Zr, there exists a basis of Zr, call it (e1, . . . , er) such that H =
〈d1e1, . . . ,drer〉, where di ∈ Z, di ≥ 0, and d1 | d2 | · · · | dr.

Corollary 2.3
With H ≤ Zr with the d1 | · · · | dr given by Theorem 2.2, we have

Zr/H ∼= (Z⊕r)/(d1Z ⊕ · · · ⊕ drZ) ∼= (Z/d1)⊕ · · · ⊕ (Z/dr).

13
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Some of the dk’s can be zero (these will be at the end), in which case the last theorem has
Z/0 ∼= Z. Some of the dk’s can be 1 (these will be at the beginning), then we have Z/1 ∼= {e}.

Corollary 2.4
Any finitely generated abelian group is isomorphic to the product of cyclic groups.

Remark 2.5. Theorem 2.2 generalizes to finitely generated modules over a PID, so its proof
should belong to the modules section.

We have by the Chinese remainder theorem, e.g., Z/2⊕Z/3 ∼= Z/6. So we can change the
form given by Corollary 2.3.

Theorem 2.6
Any finitely generated abelian group is isomorphic to

1. (invariant factors) (Z/d1)⊕ · · · ⊕ (Z/dk)⊕ Zf. The first k parts of the sum are
the torsion group, and Zf is the free part. These are unique given d1 | · · · | dk and
di > 1.

2. (elementary divisors) Z/pα11 ⊕ Z/pα22 ⊕ · · · ⊕ Z/pαmm ⊕ Zf, where pi’s are prime
and αi ≥ 1. This is unique up to reordering the pαii ’s.

September 27,
2024

Before we prove Theorem 2.2, we use the following fact:

Fact 2.7. Any basis of Zr has r elements.

Corollary 2.8
Any subgroup of Zr is free.

Proof of Theorem 2.2.

Lemma 2.9
Suppose x ∈ Zr is primitive.1 Then Zr has a basis ẽ1, . . . , ẽr with ẽ1 = x.

1i.e. if x = (a1, . . . ,ar), then gcd(a1, . . . ,ar) = 1. Equivalently, x /∈ d · Zr for any d > 1

Proof. Start with x =
∑
i aiei, where ei is the standard basis of Zr. Consider the

operations (1) ei 7→ −ei, and (2) given i 6= j, ei 7→ ei + ej.
In terms of coefficients, (1) sends ai 7→ −ai, and (2) sends aj 7→ aj − ai. Algo-

rithmically, we can subtract smaller numbers from larger numbers until all but one
ai vanish. Since x is primitive, a1 = 1, a2 = · · · = an = 0. �

Note that any x = (a1, . . . ,ar) can be written as d · x ′, where d = gcd(a1, . . . ,ar) and x ′

is primitive.

14
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Lemma 2.10
Suppose x = d · x ′ for d > 0, x ′ primitive. Given y /∈ dZr. Then there exists
a,b ∈ Z and z = ax+ by such that z = d̃ · z ′ for a primitive z ′, and 0 < d̃ < d.

Proof. Use Lemma 2.9 to change the basis so that x ′ = (1, 0, . . . , 0) and x = d ·
x ′ = (d, 0, . . . , 0). Hence, there exists a ∈ Z such that y + ax = (z1, . . . , zr) for
z1 ∈ {1, . . . ,d}. We have

gcd(z1, . . . , zr) ≤ z1 ≤ d.

If z1 6= d, we are done. If z1 = d, then since y /∈ dZr, there is some entry that
makes gcd(z1, . . . , zr) 6= d. �

Take x ∈ H \ {0}. Write it as x = d · x ′ for primitive x ′. Either H ⊆ dZr, or, by
Lemma 2.10, there exists x̃ ∈ H \ {0} where x̃ = d̃ · x̃ ′ for primitive x̃ ′ and d̃ < d. Repeat
this until we find x = d · x ′ such that H ⊆ dZr. Form a basis e1 = x ′, e2, . . . , er of Zr by
Lemma 2.9. In this basis, H 3 (d, 0, . . . , 0) = x. Every element of H is of the form

ax+ d(0,b2, . . . ,br).

Consider
{(b2, . . . ,br) | (0,db2, . . . ,dbr) ∈ H} ⊆ Zr−1

and continue inductively.2

2What we did here was show that H = dZ ⊕H ′, where H ′ is some subgroup of Zr−1.

2.2. Group actions on a set
We now pivot to arbitrary finite groups. The main tool we will use is group actions.

Definition 2.2
September 30,

2024
Let G be a group. A (left) action of G on a set X is a map

G× X→ X

(g, x) 7→ g · x

satisfying

e · x = x
(g1g2) · x = g1 · (g2 · x).

We write Gy X. A set that G acts on is called a G-set.1

1G-sets are to a group G as R-modules are to a ring R.

Example 2.1 –

1. G acts on itself: X = G and g · x = gx.

2. G acts on any set trivially: g · x = x for all g ∈ G and x ∈ X

3. G acts on itself on the right:
g · x = xg−1

15
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(we need the inverse for this to remain as an action).

4. G×G acts on Gwith a two-sided action:

(g,h) · x = gxh−1.

5. G acts on itself by conjugation:

g · x = gxg−1.

This action is special because it preserves the group operations: (gxg−1)(gyg−1) =
gxyg−1.

6. Sn y {1, . . . ,n} by permuting the set. This example is particularly useful to think
about because it says that any action of a group on a set can also be viewed as an
action of the symmetric group on that set.

7. GLn(k) y kn by applying matrices in GLn(k) to vectors in kn.

Here are some equivalent ways to view group actions. GivenG×X→ X, consider αg : X→
X : x 7→ g · x, where g ∈ G is fixed. We may rewrite the definition of a group action as αe = idX
and αg1 ◦ αg2 = αg1g2 . These two properties implies αg−1 = (αg)

−1, which implies that all
αg are bijective.

Given a set X, consider

Aut(X) = {ϕ : X→ X | ϕ is bijective} ,

which is a group under composition.

Example 2.2 – If X = {1, . . . ,n}, then Aut(X) is the symmetric group.

Then an action Gy X is equivalent to a homomorphism

α• : G→ Aut(X)
: g 7→ αg.

It follows that Aut(X) is the “universal group,” that acts on X; any other group that acts on X
must factor through Aut(X)’s action on X.

GivenGy X, define a relation ∼ on X by x1 ∼ x2 if there exists a g ∈ G such that g · x1 = x2.
We call the equivalence classes G-orbits, and let X/ ∼ be X/G (or G \X if we want to make it
clear that Gy X is a left action).

Example 2.3 –

1. Let H ≤ G act on G on the right. Then G/H is the set of right cosets.

2. kn/ GLn(k) by the action described in the last example has two orbits: the orbit
of any nonzero vector, and the orbit of the zero vector.

Given Gy X, fix x ∈ X and consider the map

ϕx : G→ X : g 7→ g · x.

Notice that ϕx(G) = G · x is the orbit of x. Moreover, ϕ−1(x) = {g ∈ G | g · x = x} are the
group elements that fix x, and this is a subgroup of G. We call it the stabilizer of x, and we
denote it Gx = StabG(x).

More generally, it only makes sense to look at ϕ−1(x ′) for x ′ ∈ G · x.
16
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Claim 2.1. ϕ−1(x ′) = gGx for some g ∈ G. In other words, G · x ∼= G/Gx.

Example 2.4 – Let Sn y {1, . . . ,n} by permutation. Let x = n. Then the orbit of x
is {1, . . . ,n} (if this holds for all x, then the action is transitive). We can identify the
stabilizer of x with Sn−1 (permuting everything except n). Then the above claim says
that

Sn/Sn−1 = {1, . . . ,n} .

Example 2.5 –October 2, 2024 Let n = n1 + · · · + nk with ni > 0. We may identify Sn1 × · · · × Snk
with a subgroup of Sn that permutes the first n1 elements, then the next n2 elements,
and so on. Then taking the quotient of this action

Sn/Sn1 × · · · × Snk

makes sense. This is identified with all partitions of {1, . . . ,n} into subsets of sizen1,n2, . . . ,nk.

Example 2.6 – The subgroup H ≤ GL2(R) of upper triangular matrices fix the x-axis.
Any other matrix changes the x-axis to another line that passes through the origin.

2.3. Sylow’s theorems
For this section, let p be a prime. Sylow’s theorems are about the existence of p-subgroups of
a group G. Recall that a p-(sub)group is a group where all elements have order pk for k ≥ 0.

Lemma 2.11
If |G| = pn and Gy X for some |X| <∞, then∣∣∣XG∣∣∣ ≡ |X| (mod p),

where XG := {x ∈ X | g · x = x, ∀g ∈ G} is the set of fixed points of the action.

Proof. Let G · x1, . . . ,G · xk be the orbits of the action. We may write

X =
k⊔
i=1

G · xi.

Notice that G · xi = {xi} is equivalent to xi being a fixed point. So we may rewrite this
disjoint union as

X = XG t
⊔̀
i=1

G · x ′i,

where x ′i are orbit representatives such that |G · x ′i| > 1. Since |G · x ′i| = [G : Gx ′
i
] > 1 and

17
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|G| = pn, |G · x ′i| is a positive power of p. So

|X| = |XG|+
∑̀
i=1

|G · x ′i| ≡ |XG| (mod p). �

We may rewrite the equation

|X| = |XG|+
∑̀
i=1

|G · x ′i|

as

|X| = |XG|+
∑̀
i=1

[G : Gx ′
i
]. (2.1)

Proposition 2.12
If |G| = pn and G 6= {e}, then the center of G is nontrivial.

Proof (sketch). Use the class equation:

|G| = |Z(G)|+
∑̀
i=1

[G : CG(xi)],

where xi are representatives for the conjugacy classes of G (this is derived from letting
G y G by conjugation and plugging things into Equation 2.1). Then reduce modulo
p.

October 07, 2024

Corollary 2.13
If |G| = pn, then for every k = 0, . . . ,n, there exists H E G such that |H| = pk.

Proof. Z(G) is abelian, so the structure theorem gives us that it has a subgroup H of
order p. Consider G/H (sinceH ⊆ Z(G) it is normal in G). It has order pn−1, so we may
find another subgroup of order p. Suppose it is generated by xH. Then |〈x,H〉| = p2.
Continue this process inductively to finish the proof.

Theorem 2.14 (Cauchy)
If p | |G|, there exists x ∈ G such that xp = e and x 6= e.

Remark 2.15. The converse to Lagrange’s theorem (every element of a finite group has order
dividing the order of a group) is not generally true, but Cauchy’s theorem gives a partial
converse.

Proof of Theorem 2.14. Consider X = {(x1, . . . , xp) ∈ Gp | x1 · · · xp = e}. Notice that

x1 · · · xp = e =⇒ x−11 x1 · · · xpx1 = x2 · · · xpx1 = x−11 x1 = e,

so our set is closed under cyclic permutations. So Z/p y X, which means |XZ/p| ≡ |X|

18
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(mod p). Hence, XZ/p = {x | xp = e}, and |X| = |G|p−1 (we choose x1, . . . , xp−1 and
then xp is forced). This implies that XZ/p contains more than just e.

Corollary 2.16
A finite group is a p-group if and only if the order of any element is a power of p.

Definition 2.3
Let G be a finite group. Suppose |G| = pkm, where p - m. A Sylow p-subgroup of G is a
subgroup of order pk (equivalently, a p-subgroup such that p does not divide its index
in G).

Theorem 2.17 (First Sylow theorem)
Sylow’s p-subgroups of G exist (where p | |G|). Moreover, if H ≤ G and H is a p group
that is not maximal, i.e. p | [G : H], then there exists H ′ D H such that |H ′| = p|H|.

Proof. Start with H ≤ G such that |H| = p (this is by Theorem 2.14).

Claim 2.2. IfH ≤ G is a p-subgroup and p | [G : H], then there exists a larger p-subgroup
H ′ strictly containing H that is also a p-subgroup.

Consider H y G/H by left multiplication. Since p divides the order of both H and
G/H, ∣∣∣(G/H)H

∣∣∣ ≡ 0 (mod p).

Let NG(H) =
{
g | gHg−1 = H

}
. We have that (G/H)H = NG(H)/H. So p | [NG(H) :

H]. NG(H)/H is a group by construction, and Theorem 2.14 gives us an element x ∈
NG(H)/H with order p, which corresponds to a subgroup H ′ of NG(H) that is larger
than H.

In this proof, we also showed that

[G : H] = [NG(H) : H] (mod p).

Theorem 2.18 (Second Sylow theorem)
All Sylow p-subgroups of G are conjugate. In particular, they are all isomorphic to each
other. If H ≤ G is a Sylow p-subgroup and H ′ ≤ G is any p-subgroup, then there exists
g ∈ G such that gH ′g−1 ⊆ H.

Proof. Let H ′ y G/H by h ′ · gH = h ′gH. Then∣∣∣(G/H)H
′
∣∣∣ ≡ |G/H| (mod p).

Since p - [G : H],
(G/H)H

′ 6= ∅,

i.e., there exists g ∈ G such that H ′gH ⊆ gH =⇒ H ′g ⊆ gH =⇒ H ′ ⊆ gHg−1 =⇒
19
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g−1H ′g ⊆ H.

Theorem 2.19 (Third Sylow theorem)
Let S be the number of Sylow p-subgroups in G. Then

1. S | |G|,

2. S ≡ 1 (mod p).

Example 2.7 (All groups of order 15 are cyclic) –October 9, 2024 Let |G| = 15. By Theorem 2.17, there
exist subgroups H3 and H5 of order 3 and 5 respectively. Suppose they are generated by
a and b respectively (since they are both cyclic). Theorem 2.19 gives that H3 and H5 are
the only Sylow subgroups in G. Theorem 2.18 gives that H3 and H5 are normal.

Recall that if H,H ′ E G satisfy H ∩ H ′ = {e} and HH ′ = G, then G ∼= H× H ′. So
G ∼= Z/3× Z/5.

2.4. Semidirect products
Let N,H ⊆ G such that N ∩H = {e} and NH = G, where N is normal and H is any subgroup.
The condition NH = G gives that each coset in G/N has a representative in H. The condition
N ∩H = {e} gives that this representative is unique. So we may write any g ∈ G uniquely as
nh for n ∈ N, h ∈ H. We define the product as

(n1h1)(n2h2) = n1(h1n1h
−1
1 )h1h2,

so the product is known once we know how H acts on N by conjugation.
G acts on N by conjugation, so we have a homomorphism

ϕ : G→ Aut(N),

which we may restrict to H by

ϕ
∣∣
H
: H ↪→ G→ Aut(N) :

h 7→ [
n 7→ hnh−1

]
.

This determines G because we may rewrite the previous product as

(n1h1)(n2h2) = n1(ϕ(h1)(n2))h1h2.

This is the semidirect product of H and N. The former construction was the inner semidirect
product, and the latter was the outer semidirect product. We denote this as G ∼= HnϕN.

October 11, 2024 In the language of free groups,

HnϕN ∼= H ∗N/
{

normal subgroup generated by h−12 h−12 (ϕ(h1)(n2))h1

}
2.5. Structure of finite groups
Recall that a non-trivial groupG is simple if its only normal subgroups areG and {e}.
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Example 2.8 – If G is abelian, G is simple if and only if G ∼= Z/p for prime p.

Theorem 2.20
Finite simple groups are classified.

• There are 18 infinite collections of groups, e.g.,
– Z/pwhere p is prime,
– An, where n ≥ 5.

• There are 26 sporadic groups that don’t fit into these 18 collections.

We’ll introduce two theorems useful for working with finite groups, the Jordan-Hölder theo-
rem and the Krull-Schmidt theorem, but we will not prove them.

Definition 2.4
Let G be a finite group. A composition series of G is a chain

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gk = {e}

such that Gi+1 is normal in Gi (recall that “is a normal subgroup of” is not transitive, so
when we write G = G0 D G1 D G2 D · · · D Gk = {e}, it only says that Gi+1 is normal
in Gi) and Gi/Gi+1 is simple. We call the quotients G0/G1,G1/G2, . . . ,Gk−1/Gk the
simple factors of G.

Fact 2.21. For any finite group G, a composition series exists.

Theorem 2.22 (Jordan-Hölder)
Any two composition series of the same group G have isomorphic simple factors (up to
reordering).

In particular, if all Gi/Gi+1 in the composition series of G are abelian, then G is solv-
able.

Definition 2.5
October 14, 2024 A group G is indecomposable if whenever G ∼= G1 ×G2 for some groups G1, G2, either

G1 = {e} or G2 = {e}.

Example 2.9 – The indecomposable abelian groups are Z/pnZ for prime p and n ≥ 1.

Fact 2.23. Any finite group G can be written as the product G ∼= G1 × · · · ×G` for indecom-
posable groups Gi.

Theorem 2.24 (Krull-Schmidt)
Any two such presentations have the same number of indecomposable groups and the
groups are unique up to permutation (and isomorphism).
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Remark 2.25. Theorem 2.22 and Theorem 2.24 hold for weaker conditions; namely that G
need not be finite, it just needs to satisfy the ascending and descending chain conditions. These
are statements about the finiteness of a series. The descending chain condition is that for
{Gi | Gi E G},

G1 D G2 D · · ·

eventually has Gi = Gi+1 for all i ≥ n (stabilizes). The ascending chain condition is the same
but for

G1 E G2 E · · ·

We’ll see more about this in 742.

Example 2.10 – Z satisfies the ascending chain condition but not the descending chain
condition.
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3. Category theory

Definition 3.1
A category C consists of

1. A class of objects Ob(C ).

2. For any objects A,B ∈ Ob(C ), there is a set MorC (A,B) of morphisms from A to
B.

3. For any A,B,C ∈ Ob(C ), there is an operation of composition

◦ : MorC (B,C)× MorC (A,B)→MorC (A,C)
(ϕ,ψ) 7→ ϕ ◦ψ.

The composition operation must satisfy

a) For all A ∈ Ob(C ), there exists an identity morphism idA ∈ MorC (A,A)
such that ϕ ◦ idA = ϕ and idA ◦ψ = ψ (ϕ and ψ are chosen so that these
compositions make sense).

b) Given ϕ,ψ, θ (whose compositions below make sense), we have

(ϕ ◦ψ) ◦ θ = ϕ ◦ (ψ ◦ θ).

Example 3.1 –October 16, 2024 Groups form a category, where objects are groups and morphisms are
group homomorphisms with composition being defined as expected.

Moreover, abelian groups, rings, and sets form a group with morphisms being the
usual homomorphisms.

When a category’s objects are sets (possibly with extra structure) and Mor(A,B) ⊆ MorSet(A,B),
i.e. morphisms happen to be set-theoretic functions, we say the category is concrete.

For every X ∈ C (this means X ∈ Ob(C )), idX ∈ MorC (X,X) is unique.

Definition 3.2
ϕ ∈ MorC (X, Y) is an isomorphism if there exists ψ ∈ MorC (Y,X) such that ψ ◦ϕ = idX
and ϕ ◦ψ = idY .

3.1. Universal properties

Example 3.2 –October 18, 2024 LetA,B ∈ C . Given C ∈ C and two morphisms p1 : C→ A and p2 : C→
B, we say that C (along with the morphisms p1 and p2) is the (direct) product of A
and B if the following universal property holds: given any C ′ ∈ C and any p ′

1 : C
′ → A

and p ′
2 : C

′ → B, there exists a unique morphism ϕ : C ′ → C such that p ′
1 = p1 ◦ ϕ,

p ′2 = p2 ◦ϕ.
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In a picture:

C ′

C A

B

∃!ϕ

p ′
1

p ′
2

p1
p2

The black part is a direct product if for any given orange part, there is a unique blue part
making the diagram commute.

Definition 3.3
Let C be a category and {Ai}i∈I be a family of objects. Their product is an object C ∈ C
equipped with maps pi : C → Ai (for all i ∈ I) such that for any C ′ ∈ C and any maps
p ′i : C

′ → Ai, there exists a unique ϕ : C ′ → C such that p ′
i = pi ◦ϕ for all i.

Theorem 3.1
In any category C if a product exists, it is unique up to unique isomorphism.

Because of this, we write C =
∏
i∈IAi.

We can take the “dual” of the product by reversing the arrows in the category.

Example 3.3 – Let A,B ∈ C . Given C ∈ C and two morphisms i1 : A→ C and i2 : B→
C, we say that C (along with the morphisms i1 and i2) is the (direct) coproduct A and
B if the following universal property holds: given any C ′ ∈ C and any i ′1 : A → C ′ and
i ′2 : B→ C ′, there exists a unique morphismϕ : C→ C ′ such that i ′1 = ϕ ◦ i1, i ′2 = ϕ ◦ i2.

In a picture:

C ′

C A

B

∃!ϕ
i ′1

i1

i ′2 i2

Definition 3.4
Let C be a category and {Ai}i∈I be a family of objects. Their coproduct is an object C ∈ C
equipped with maps ij : Aj → C (for all j ∈ I) such that for any C ′ ∈ C and any maps
i ′j : Aj → C ′, there exists a unique ϕ : C→ C ′ such that i ′j = ϕ ◦ ij for all i.

Theorem 3.2
In any category C if a coproduct exists, it is unique up to unique isomorphism.

Because of this, we write C =
∐
i∈IAi.
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Example 3.4 – In Set, the product of sets A, B is the usual cartesian product A× B. The
coproduct is the disjoint union At B.

In Grp, the coproduct is the free product.
In AbGrp, the product and the coproduct are A× B.

Definition 3.5
October 21, 2024 Given a category C , we define the opposite category, denoted C op as C with arrows

reversed. In other words, Ob(C op) = Ob(C ), MorC op(A,B) = MorC (B,A). We compose
morphisms as follows: given ϕ ∈ MorC op(A,B) and ψ ∈ MorC op(B,C), we define ψ ◦
ϕ ∈ MorC (C,A) = MorC op(A,C)

So we can say that if some object is a product in the opposite category, then it is the coprod-
uct in the original category, since the arrows in the diagram would be reversed.

3.2. Functors
Definition 3.6
Given categories C and D , a functor F : C → D is

1. A map F : Ob(C )→ Ob(D) : A 7→ F(A),

2. For all A,B ∈ C and ϕ ∈ MorC (A,B), we have corresponding morphism F(ϕ) ∈
MorD (F(A), F(B)). In other words we have a map MorC (A,B)→MorD (F(A), F(B)).
F needs to satisfy

a) F(idA) = idF(A),

b) F(ϕ ◦ψ) = F(ϕ) ◦ F(ψ).

Example 3.5 –

• We have the identity functor idC : C → C .

• Another functor is id : AbGrp → Grp, since abelian groups and their homomor-
phisms are, in particular, groups and group homomorphisms respectively. This
example is saying that AbGrp is a subcategory of Grp.

• Consider a functor Tors : AbGrp → AbGrp given by sending A to its torsion sub-
group, Ators := {x ∈ A | xn = 1 for some n <∞}. The functor sends a morphism
from A→ B to its restriction Ators → Btors (it’s easy to check this is a well-defined
map).

• In general, the torsion elements of a general group do not form a group. But we
still have a functor Tors : Grp→ Set.

Example 3.6 (Free and forgetful functors) –

• The free functor F : Set→ Grp that sends a set X to the free group on X, F(X).

• The forgetful functorG : Grp→ Set that sends a groupH to its underlying set, and
homomorphisms to set-theoretic maps.
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October 23, 2024 A more interesting thing we would want to define as a functor is how, say, group homo-
morphisms

G1 → G ′
1, G2 → G ′

2

induce a homomorphism G1×G2 → G ′
1×G ′

2. But functors don’t take in two inputs. We can
resolve this easily.

Definition 3.7
Given categories C , D , define the product category, C ×D where

1. Ob(C ×D) = Ob(C )× Ob(D).

2. For (C1,D1), (C2,D2) ∈ C ×D , let

MorC×D ((C1,D1), (C2,D2)) := MorC (C1,C2)× MorD (D1,D2).

3. Composition is given by composition in each category (i.e., (ϕ1,ψ1) ◦ (ϕ2,ψ2) =
(ϕ1 ◦ϕ2,ψ1 ◦ψ2)).

Example 3.7 – Now our product operation defined before is the same as a functor

F : Grp × Grp→ Grp.

Example 3.8 (Quotients by subgroups) – For any group G and any subgroup H ≤ G, we
have a quotient G/H, which is a set. Let’s represent this operation as a functor.

The starting category will be SubGrp, whose objects are pairs (G ⊇ H), where G is a
group and H is a subgroup of G. The morphisms (G1 ⊇ H1)→ (G2 ⊇ H2) are given by

MorSubGrp((G1 ⊇ H1), (G2 ⊇ H2)) := {ϕ : G1 → G2 | ϕ(H1) ⊆ H2} .

We then have a functor
Q : SubGrp→ Set

that sends (G ⊇ H) to G/H (and morphisms are the induced ones).

Example 3.9 –October 25, 2024 Consider a direct sum functor F : AbGrp × AbGrp → AbGrp that sends
(A,B) toA⊕B (with the obvious morphisms), and another direct sum functorG : AbGrp×
AbGrp→ AbGrp that sends (A,B) to B⊕A. Then F is naturally isomorphic to G.
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4. Representation theory

Definition 4.1
November 20,

2024
Given a groupG and a vector space V over a field k, a representation of G on V is a linear
action of G on V , i.e., G× V → V : (g, v) 7→ g · v is a group action, and g · (v1 + v2) =
g · v1 + g · v2, g · (cv) = c(g · v).

If V is finite-dimensional, we can choose a basis B = {v1, . . . , vn} of V . For each g ∈ G,
we have a map ρ(g) : V → V : v 7→ g · v, which corresponds to a matrix Rg := MB

B(ρ(g)).

Because Gy V is an action, Rg is invertible for all g ∈ G, and Rg1Rg2 = Rg1g2 , Re = I. So
we have a homomorphism

ρ : G→ GLn(k),

which we call a matrix representation of G.

Example 4.1 – Dn is the symmetries of a regular n-gon, so we can think of its represen-
tation Dn → GL2(R). The matrix representation of the generators of Dn are

r 7→ [
cos 2πn − sin 2πn
sin 2πn cos 2πn

]
, s 7→ [

−1
1

]
.

Example 4.2 –November 22,
2024

If G y X, we can form a representation of G by letting V = 〈X〉 be
the free vector space on X.1 Since g ∈ G permutes the elements of X, we can create a
corresponding automorphism of V by permuting the basis elements in the same way.
This corresponds to a linear transformation. If X is finite, the matrix representation is
written as a permutation matrix.

Let’s consider Sn y {1, . . . ,n}. Then

ρ(σ)︸︷︷︸
∈GLn

(a1, . . . ,an) = (aσ−1(1), . . . ,aσ−1(n)).

1This means the vector space where we make X a basis.

Here’s an equivalent formulation. Let X be a set with a group action G y X, and V =
{f : X→ k}, a k-vector space. Then a representation is a group homomorphism ρ : G→ GL(V)
such that

(ρ(g)f)(x) = f(g−1 · x).

The inverse is here to make sure ρ(g1)ρ(g2) = ρ(g1g2).

Remark 4.1. A representation of G on V is also a homomorphism ρ : G→ AutVectk(V). More
functorially, if we create the category BG with one object ∗ and HomBG(∗, ∗) = G (with
composition given by group multiplication), a representation is a functor F : BG→ Vectk. The
example given above was a contravariant functor Sets→ Vectk : X 7→ {f : X→ k}, where

[ϕ : X→ Y] 7→ [ϕ∗ : {g : Y → k}→ {ϕ∗g = g ◦ϕ : X→ k}] .

If X is infinite, then 〈X〉 can be strictly “smaller than” X∗ := {f : X→ k}, because 〈X〉 corre-
sponds to

⊕
x∈X k and X∗ corresponds to

∏
x∈X k.
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4.1. Structure of representations
November 25,

2024
Let V be a representation of G. If G has a G-invariant subspace W ⊆ V , i.e. GW ⊆ W,
then we induce a sub-representation of G on the subspace W. Further, we induce a quotient
representation of G on the space V/W given by g · (v+W) = g · v+W.

If V1 and V2 are G-representations, then V1 ⊕ V2 (the outer direct sum) is a G represen-
tation by letting G act on each entry: g · (v1, v2) = (g · v1,g · v2). If W1,W2 ⊆ V are sub-
representations andW1 ⊕W2 = V (the inner direct sum), then we can also define a represen-
tation onW1 ⊕W2.

Example 4.3 – Let G = S2 have a representation on R2 by permuting basis vectors.
Then 〈(1, 1)〉 and 〈(1,−1)〉 are both G-invariant. Let these become sub-representations
as V1 and V2. Then R2 = V1 ⊕ V2 is a decomposition of R2 into G-invariant subspaces.

We also claim these are the only (non-trivial) G-invariant subspaces. Suppose the per-
mutation

(
1 2

)
∈ S2 satisfies(

1 2
)
· (a,b) = (b,a) ∈W

for all (a,b) ∈W. If (a,b) and (b,a) are linearly independent, thenW = R2. Otherwise,
(a,b) = ±(b,a), which meansW ⊇ 〈(1, 1)〉 orW ⊇ 〈(1,−1)〉, which implies the result.

Definition 4.2
A representation V 6= 0 of G is irreducible (simple) if the only invariant subspaces are 0
and V . A representation V is completely reducible (semisimple) if V ∼=

⊕
α Vα for irre-

ducible Vα (we can also think of this as an inner direct sum by letting Vα be irreducible
sub-representations).

Example 4.4 – Irreducible representations ofG = {e} are one-dimensional vector spaces.
Z/2 y R by multiplying by −1, so we have an action of Z/2 on RR (the set of

functions f : R → R) by [1] · f(x) = f(−x). A small irreducible subspace can be formed
by taking the function f ∈ RR and considering the subspace 〈f(x), f(−x)〉, which is
an irreducible sub-representation. In particular, if f is even or odd, then this is a one-
dimensional space. We now prove that RR is completely reducible. Recall that every
function can be uniquely decomposed as the sum of an even and odd function. In other
words,

RR = (RR)even ⊕ (RR)odd.

We further decompose these subspaces using the facts above to show that RR is com-
pletely reducible.

Example 4.5 –December 02,
2024

If char(k) 6= 2 and ρ : S2 → V is a representation where V is a vector
space over R, then we have a decomposition

V = V+ ⊕ V−,

where
V+ = {v : ρ(σ)v = v} , V− = {v : ρ(σ)v = −v} .
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4.2. Morphisms of representations
We want to define morphisms in the category of represenations.

Definition 4.3
Suppose V ,W are two representations ofG. A morphism of representations (homomor-
phism) is a k-linear map ϕ : V →W which is also a map of G-sets:

ϕ(g · v) = g ·ϕ(v), ∀v ∈ V ,g ∈ G

(the second condition is called G-equivariance). This defines a category of G representa-
tions over k.

Remark 4.2. Given two representations V ,W, we can just consider them as vector spaces and
look at the vector space of linear maps Mork(V ,W). Consider the action G y Homk(V ,W)
given by

ϕg(v) := g ·ϕ(g−1 · v).
Then ϕ ∈ HomG-Rep(V ,W) ⇐⇒ ϕg = ϕ for all g ∈ G.

4.3. Decomposing representations: Maschke’s theorem

Theorem 4.3 (Maschke’s theorem)
Any representation V of a finite group G is completely reducible provided that char k -
|G|.

We’ll reduce the theorem to the problem of finding complementary subspaces.

Lemma 4.4
A representation V is completely reducible ⇐⇒ every sub-representation W ⊆ V has a
complementary subspace (i.e. W⊥ ⊆ V with V =W ⊕W⊥).

Proof. ( ⇐= ) If V is reducible, there exists a sub-representation W ⊆ V with W 6= 0,V .
So there exists U ⊆ V such that V = U ⊕W. To iterate, we need to show that the
assumption holds for W. If W ′ ⊆ W is a sub-representation, there is a U ′ such that
V = U ′ ⊕W ′. ThenW = (U ′ ∩W)⊕W ′.

This works if dimV <∞, but extends to the infinite case with Zorn’s lemma.
( =⇒ ) Suppose V =

⊕
i Vi ⊇ W, where Vi are irreducible. W = V is trivial. W ⊂ V

implies Vi 6⊆ W for some i. For each such i, Vi ∩W ⊂ Vi, so Vi ∩W = 0, hence
Vi ⊕W ⊆ V . We iterate, i.e., find Vj 6⊆ Vi ⊕W and continue.

There’s a natural way to find a complementary subspace of, say W ⊆ Rn: use an inner
product 〈·, ·〉 on Rn and consider the orthogonal complement

W⊥ = {u : 〈u,w〉 = 0, ∀w ∈W}

We’ll need to adapt this to work with the G action.
If V is a finite-dimensional, real/complex vector space, then it has an inner product 〈·, ·〉.

We then define a new inner product that isG-invariant (i.e., 〈g · v,g ·w〉 = 〈v,w〉) by using an
“averaging” technique:

〈v,w〉G :=
1

|G|

∑
g∈G

〈g · v,g ·w〉 .
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Then we can decompose as in the case of the normal inner product.
The caveat with this proof is that it only works for finite-dimensional representations over

R or C. We can still extend this idea of creating a G-invariant complementary subspace out of
some complementary subspace though.

Proof of Theorem 4.3 (sketch). Let W ⊆ V and consider any complementary sub-
space U, which may not be G-invariant. We have a natural isomorphism

U
ι
↪→ V

π
� V/W,

so U corresponds to a (linear) section s : V/W → V (i.e. πs = idV/W), and conversely,
any section corresponds to a complementary space.

Now take any section s : V/W → V . Consider

s̃(x) :=
1

|G|

∑
g∈G

sg(x) =
1

|G|

∑
g∈G

g · s(g−1 · x),

(c.f. Remark 4.2). We first claim this is a section. Indeed,

π

 1

|G|

∑
g∈G

g · s(g−1 · x)

 =
1

|G|

∑
g∈G

π
(
g · s(g−1 · x)

)
=
1

|G|

∑
g∈G

g · πs(g−1 · x)

=
1

|G|

∑
g∈G

e · x

= x.

We now let Ũ := s̃(V/W) be the corresponding complementary subspace. This subspace
is g invariant, since multiplication by g ∈ G is a bijeciton of G to itself.

We then finish by applying Lemma 4.4.

Example 4.6 – Before, we showed that we can decompose a representation V of G = S2
into two irreducible subspaces over R.

On the other hand, if k = F2, then if we let

ρ(σ) =

[
1 1
0 1

]
,

then there is only one irreducible subspace, 〈(1, 0)〉.

Schur’s lemma tells us that the homomorphisms of G-representations are easy to describe
over algebraically closed fields.
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Theorem 4.5 (Schur’s lemma)
LetDecember 06,

2024
V , W be irreducible, finite-dimensional representations of G over an algebraically

closed field k. Then

1. if V �W, then HomG-rep(V ,W) = 0,

2. if V ∼=W, then HomG-rep(V ,W) = EndG-rep(V) = k.

Proof. Use the definition of irreducible to get that any morphism ϕ : V → W is either
the zero map, or an isomorphism.

Now we show that, in the case of an isomorphism, it is a scalar. Since dimV <∞ and
k is algebraically closed, we have a root of the minimal polynomial, λ (eigenvalue). By
the first paragraph, either ϕ− λI = 0 or ϕ− λI is an isomorphism, but the latter cannot
happen, since an eigenvector corresponding to λ is in the kernel of this map.

Given an irreducible representation V and any finite dimensional representationW, we can
use Maschke’s theorem (4.3) to decompose W =

⊕n
i=1Wi into irreducible representations,

and then

HomG-rep(V ,W) ∼=
n⊕
i=1

HomG-rep(V ,Wi).

Corollary 4.6
Let V ∼=

⊕
i V
mi
i , W ∼=

⊕
j V
ni
i , where Vi are irreducible, non-isomorphic representa-

tions. Then
dim HomG-rep(V ,W) =

∑
i

mini.

Corollary 4.7
December 09,

2024
Let V be an irreducible representation of a group G over an algebraically closed field k.
Let g ∈ Z(G), so ρ(g) : V → V is a homomorphism. Then ρ(g) ∈ k (i.e. it represents
scalar multiplication).

If G is abelian, then G acts by scalars (ρ : G→ K×), so dimV = 1.

Non-Example 4.1 – LetG = SO(2) (which is abelian, because it’s isomorphic to R/(2πZ))
and let it act on R2 in the natural way.

4.4. Some character theory
The overall goal is to find dimC HomG−rep(V ,W) for V and W G-representations over C. A
smaller goal s to find dimVG, where VG = {v ∈ V : G · v = v}.
Exercise 4.1.

(a) Let V be a linear space and P : V → V be a linear operator such that P2 = P. Show that
V = kerP⊕ imP. Operators having this property are called projectors.

(b) Suppose further that dimV = n. Prove that there exists a basis of V such that the matrix
P is a diagonal matrix with some number of 1’s on the diagonal and 0’s elsewhere.
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Consider the operator

AV : V → V ,

: v 7→ 1

|G|

∑
g∈G

ρ(g)v.

We have that AV (V) ⊆ VG, and AV |VG = idVG . This makes AV a projector, so V = im(AV )⊕
ker(AV ) = VG ⊕ ker(AV ). Recall that we can choose a basis so that the matrix of AV is
diag(1, . . . , 1, 0, . . . , 0), where the basis vectors that get mapped to themselves span im(AV ).

Notice that this gives a “fast” way of computing dim im(AV ) = dimVG: by taking Tr(AV ).
So

dimVG = TrAV =
1

|G|

∑
g∈G

Tr(ρ(g)).

Example 4.7 – Let S3 y C3 by the permutation matrices. We compute the trace of each
representation for σ ∈ S3 and we have

dimVG =
1

|S3|

∑
σ∈S3

Tr(ρ(σ)) =
3+ 1+ 1+ 1

6
= 1.

Definition 4.4
December 11,

2024
If (V , ρ) is a finite-dimensional representation of a group G over k, its character is a map
χV : G→ k : g 7→ Tr(ρV (g)).

Proposition 4.8 (Properties of characters)
1. χV (hgh−1) = χV (g) for g,h ∈ G. So χV is constant on conjugacy classes (the

fancy name for a function with this property is a class function).

2. If V1, . . . ,Vk representations of G over k, χ
V
n1
1 ⊕···⊕Vnkk

= n1χV1 + · · ·+nkχVk .

3. IfW ⊆ V is a subrepresentation, χV = χW + χV/W .

Proposition 4.9 (Properties of characters of C-representations of finite groups)
1. If G is finite and V is an n-dimensional representation of G over C, ρ(g) has n

eigenvalues (in fact, ρ(g) is diagonalizable), and χV (g) is the sum of those eigen-
values.1

2. The eigenvalues are roots of unity, and |χV (g)| ≤ n.

3. χV (g−1) = χV (g).

1Further χV (gk) is the sum of the kth powers of eigenvalues, which we could use to recover the actual
eigenvalues.
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Example 4.8 – In Sn the conjugacy classes are determined by cycle type. Further, g−1

is conjugate to g in Sn for all g ∈ Sn. So all characters of Sn are real.

Let’s return to the original question: computing the dimension of HomG-rep(V ,W). We
have an action G y HomG-rep(V ,W) by g · ϕ = ρV (g)ϕρW(g)−1. We also showed that
HomG-rep(V ,W) = HomC(V ,W)G. Therefore, the dimension is equal to χHomC(V ,W).

Lemma 4.10
Fix n,m and consider A ∈ Matn×n(k), B ∈ Matm×m(k). Consider the map

Φ : Matn×m(k)→Matn×m(k)

M 7→ AMB.

Then Tr(Φ) =
∑
i,jAiiBjj = Tr(A)Tr(B).

Proof. [
Mij

] Φ7→
∑
k,`

AikMk`B`j

 .

Looking at where it sends the matrix Eij, which is 1 in the ijth entry and zero is every-
where else, we have Φ(Eij)ij = AiiBjj. This gives us the formula.

Hence,

χHomC(V ,W)(g) = Tr(ρV (g))Tr(ρW(g−1)) = χV (g)χW(g−1) = χV (g)χW(g).

Theorem 4.11 (Orthogonality relation)

〈χV ,χW〉 := dim HomG-rep(V ,W) =
1

|G|

∑
g∈G

χV (g)χW(g).

If V andW are irreducible,

〈χV ,χW〉 =
{
0 if V 6=W,
1 if V ∼=W.

Example 4.9 – Let G = S3. We’ve computed characters already for two representations:

Representation\Character of Cycle Type χ(e) χ(12) χ(123)
C (trivial) 1 1 1

V = C3 (permuting basis) 3 1 0

We compute that

〈χV , idC〉 =
1 · 3+ 3 · 1 · 1+ 2 · 1 · 0

6
= 1.

So there exists a representationW such that χW = χV − 1 (this gives us χW(e) = 3− 1 =
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2, χW(12) = 0, χW(123) = −1 by additivity of characters). We compute

〈χW ,χW〉 = 2 · 2+ 0+−1 ·−1 · 2
6

= 1.

Theorem 4.12
χV span the space of class functions (i.e. the number of irreducible representations is the
number of conjugacy classes).
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5. Commutative algebra

January 22, 2025 This is the beginning of 2nd semester (MATH 742).
For this section, assume all rings are associative (i.e. multiplication is associative) and unital

(1 ∈ R). Rings are (usually) commutative. We’ll now try to build a category of such rings. The
objects will be rings as above. A homomorphism between rings R, S preserves addition and
multiplication, and also sends 1R to 1S. Denote the category of rings as Ring.

Example 5.1 (Zero ring) – We have 1 = 0 in R ⇐⇒ R = {0} is the zero ring.

Example 5.2 – The only homomorphismϕ : Z→ Z is the identity. Further, there is only
one homomorphism ϕ : Z→ R, where R is any ring.

In other words, Z is the initial object (for every R ∈ Ring, there exists a unique homo-
morphism ϕ : Z→ R) in Ring.

Further, 0 is the final object (for every R ∈ Ring, there exists a unique homomorphism
ϕ : R→ 0) in Ring.

5.1. Ideals
Definition 5.1
A ideal I is a(n additive) subgroup of R such that R · I = I. A subring S is a(n additive)
subgroup of R such that S · S ⊆ S and 1 ∈ S.

We have operations on ideals:
I+ J, I∩ J, I · J.

The last one is subtle: I · J =
{∑

finite xiyi : xi ∈ I,yj ∈ J
}

. Given an infinite collection of ideals
{Iλ},

⋂
λ Iλ and

∑
λ Iλ are both ideals, where the latter is defined by finite sums of elements of

{Iλ}.

Theorem 5.1
Let ϕ : R→ S be a homomorphism. Then

1. kerϕ is an ideal.

2. There is an isomorphism R/ kerϕ ∼
−→ ϕ(R) induced by ϕ.

Remark 5.2 (Universal mapping property of the quotient). R/I is the unique object in Ring
such that ϕ : R→ S uniquely factors through R/Iwhen ϕ|I = 0.

Example 5.3 – Following the ideas of the above remark, since Z is initial, the unique
map Z → R factors through Z/3 only when the ideal 3Z gets sent to 0. In other words,
this map factoring is equivalent to 0 = 3 in R.

Example 5.4 – Further, if ϕ : R[x,y] → S is a ring homomorphism, it is entirely deter-
mined by ϕ|R : R→ S and ϕ(x), ϕ(y). We can imagine polynomial rings as the “free ob-
jects” of Ring, and the universal mapping property of the quotient is the same as adding
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“relations”.

5.2. Algebras
January 24, 2025 Definition 5.2

Let R be a ring. An R-algebra is a ring S together with a ring homomorphism i : R→ S.

Example 5.5 –

1. Any ring S that contains R as a subring.

2. R = R, S = {R-valued functions on a “space” X}, and i : R → S sends a to the
constant function that is always a.

3. S = R[x1, . . . , xn], where i : R→ S is the obvious identity map.

4. Any ring is a Z-algebra because Z is initial.

Here’s the motivation for homomorphisms of algebras: suppose we wanted to classify all
ring homomorphisms ϕ : R[x] → C. The “obvious” candidates are evaluation maps over
some z ∈ C. However, we only know where 1 gets sent to, but perhaps irrational numbers (π,
e,
√
2) could get mapped somewhere unexpected, so the space of such ϕ is much larger than

it seems. However, once ϕ|R is determined, all we need is ϕ(x) to get the whole homomor-
phism. To recover this issue with ϕ|R, we define an algebra homomorphism.

Definition 5.3
Given two algebras S1, S2 over R is an algebra homomorphism ϕ : S1 → S2 is a homo-
morphism such that the diagram

S1

R

S2

ϕ

i1

i2

commutes.

Consider the two R-algebras R[x] and C with structure maps i1 : R→ R[x] and i2 : R→ C,
respectively as the obvious inclusion maps. Then the algebra homomorphisms ϕ : R[x] → C

are precisely the evaluation maps. This generalizes.

Proposition 5.3
Let S be an R-algebra. Then

HomR-alg(R[x],S) = {evα : α ∈ S} ,

where evα is the evaluation map.
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Corollary 5.4
Let p1, . . . ,pk ∈ R[x]. Then

HomR-alg (R[x]/(p1(x), . . . ,pk(x)),S) = {evα : α ∈ Z(p1, . . . ,pk)} .

Remark 5.5. What this says: R[x]/(p1(x), . . . ,pk(x)) has all the “data” of solutions to p1(α) =
· · · = pk(α) = 0. If we want to check solutions over some R-algebra S, then we look at the
above Hom set.

5.3. Chinese remainder theorem and idempotents
Definition 5.4

January 27, 2025 Two ideals I1, I2 ⊆ R are comaximal if I1 + I2 = R.

Theorem 5.6 (Chinese remainder theorem)
If I1 and I2 are comaximal, the natural map R→ R/I1× R/I2 is surjective, hence R/I1 ∩
I2 ∼= R/I1 × R/I2. Also, I1 · I2 = I1 ∩ I2.

Theorem 5.7
There is a 1-1 correspondence between

1. Isomorphisms R ∼
−→ R1 × R2,

2. pairs of ideals I1, I2 ⊆ R that are comaximal and I1 ∩ I2 = 0.

Proof. ((2) =⇒ (1)) Set Rj = R/Ij for j = 1, 2 and use CRT.
((1) =⇒ (2)) Set I1 = {0}× R2 and I2 = R1 × {0}.

Definition 5.5
e ∈ R is an idempotent if e2 = e.

The key example is that whenever R ∼= R1 × R2, then (1, 0), (0, 1) are idempotents. Hence, the
identity (1, 1) is a sum of idemptoents.

Proposition 5.8
There is also a 1-1 correspondence from objects in Theorem 5.7 and

3. idempotents e ∈ R.

Proof. ((1) =⇒ (3)) was the above example, where (1, 1) = (1, 0) + (0, 1).
((3) =⇒ (1)) Given an idempotent e, set I1 = (1− e), I2 = (e). We have e+ (1− e) =

1 ∈ I1 + I2, so I1 + I2 = R. To prove I1 ∩ I2 = 0, recall that I1 · I2 by CRT. Then
a1(1− e) · a2e = a1a2(e− e2) = 0.
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5.4. Prime and maximal ideals
Definition 5.6
m ⊂ R is maximal if I ⊃ mThese are proper

containments.
implies I = R. p ⊂ R is prime if ab ∈ p implies a ∈ p or b ∈ p.

Proposition 5.9
m ⊆ R (resp. p ⊆ R) is maximal (resp. prime) ⇐⇒ R/m is a field (resp. R/p is a(n
integral) domain).

Proposition 5.10
1. Any maximal ideal is prime.

2. Any ring R 6= 0 has maximal ideals.

3. Given an ideal I, there is a 1-1 correspondence between ideals of R/I and ideals
of R containing I. In particular, any proper ideal I ⊂ R is contained in a maximal
ideal.

5.5. Extensions and contractions of ideals
January 29, 2025 Let ϕ : R → R ′ be a homomorphism. If I ′ ⊆ R ′ is an ideal, ϕ−1(I ′) ⊆ R is an ideal. We write

(I ′)c as the contraction of I ′.
If I ⊆ R, ϕ(I) ⊆ R ′ is not necessarily an ideal. Instead, we consider (ϕ(I)) = R ′ ·ϕ(I) =: Ie,

which we call the extension of I.

Proposition 5.11
A contraction of a prime ideal is prime, but a contraction of a maximal ideal is not nec-
essarily maximal.

Proof. Notice that we have an injective ring homomorphism R/(I ′)c ↪→ R ′/I ′ induced
by ϕ. This identifies R/(I ′)c with a subring of a domain. The subring of a domain is a
domain, so (I ′)c is prime. On the other hand, a subring of a field need not be a field.

Remark 5.12. If ϕ : R → R ′ is surjective, then R ′/I ′ ∼= R/(I ′)c, so contractions of maximal
ideals are actually maximal.

5.6. Types of domains
Let R be a domain, i.e., R has no zero divisors and 1 6= 0. Then a | b ⇐⇒ b ∈ (a) ⇐⇒
(b) ⊆ (a). We say a nonzero, non-unit element x ∈ R is irreducible if x = ab implies a ∈ R×
or b ∈ R×.

Definition 5.7
A domain R is a unique factorization domain (UFD) if every nonzero, non-unit element
is a product of irreducibles uniquely (up to permutation).
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Definition 5.8
A ring R is a principal ideal domain (PID) if every ideal is principal, i.e., generated by
one element.

Proposition 5.13
Field =⇒ PID =⇒ UFD.

Proposition 5.14
If F is a field, then F[x] is a PID.

The idea to prove this is to create a long division algorithm for polynomials.

Proposition 5.15
If R is a UFD, then R[x] is a UFD.

Proof (sketch). Let F = Frac(R) (R’s field of fractions). The idea is to compare factor-
ization in R[x] and F[x].

For example, if R = Z, then F = Q. Consider 13x
2 − 3x+ 1

5 , which is irreducible in
Q[x]. We can “clear denominators” to get 5x2 − 45x+ 3 being irreducible in Z[x].

So we consider the set

R̃[x] = {anx
n + · · ·+ a0 ∈ R[x] : gcd(a0, . . . ,an) = 1} .

Hence,
R[x] \ {0} = (R \ {0}) · R̃[x].

In fact,
F[x] \ {0} = (F \ {0}) · R̃[x].

Lemma 5.16 (Gauss’ lemma)
R̃[x] · R̃[x] ⊆ R̃[x].

As a consequence, if aP(x) ∈ F[x], where a ∈ F \ {0} and P ∈ R̃[x], then aP(x) is
irreducible in F[x] if and only if P(x) is irreducible in R[x].

Corollary 5.17
If F is a field F[x1, . . . , xn] is a UFD.

5.7. Radical ideals
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Definition 5.9
January 31, 2025 For I ⊆ R an ideal, the radical of I is the set

√
I =
{
x : xk ∈ I,k ∈ N

}
.

Example 5.6 – If I = (300) = (22 · 3 · 52) ⊆ Z, then
√
I = (2 · 3 · 5) = (30).

Proposition 5.18 (Properties of the radical)
Let I ⊆ R be an ideal.

(a)
√
I ⊇ I.

(b)
√
I is an ideal.

(c)
√√

I =
√
I.

Proof. (a) is clear.
(b) if a ∈

√
I and b ∈ R, then (ab)k = ak︸︷︷︸

∈I
bk ∈ I. If a,b ∈

√
I such that an,bm ∈ I,

then (a+ b)n+m−1 ∈ I.
(c) if a ∈

√√
I, then ak ∈

√
I, so akm ∈ I, which means a ∈

√
I.

Example 5.7 – The radical ideals in Z are (a), where a is square-free or zero.

Definition 5.10
I is a radical ideal if

√
I = I.

√
I is the smallest radical ideal containing I.

Notice that prime ideals are radical.

Theorem 5.19 (Scheinnullstellensatz)
Let I ⊆ R be an ideal. Then √

I =
⋂
p⊇I

p prime

p.

Proof. (⊆) Since
√
I is the smallest radical ideal containing I and each p is a prime (hence

radical) ideal containing I, we are done.
(⊇) Let x /∈

√
I, so

{
xk : k ≥ 0

}
∩ I = ∅. We’ll construct a prime ideal J such that J ⊇ I

and x /∈ J.
Let J be an ideal such that (1) J ⊇ I, (2)

{
xk : k ≥ 0

}
∩ J = ∅, (3) J is maximal amongst

ideals satisfying (1) and (2).
We’ll use Zorn’s lemma. Consider the poset (P ,�) of all ideals satisfying (1) and (2),

ordered by inclusion. The poset is non-empty because I ∈ P . Now consider a chain of
ideals {Iα}. The upper bound

⋃
α Iα satisfies (1) and (2).

40



5.7 Radical ideals Pramana

We prove J is prime. Let a,b /∈ J. We have J + (a) ⊃ J, which means J + (a) fails
(1) or (2), but it clearly fails (2). Hence, there exists n ≥ 0 such that xn ∈ J + (a).
Similarly, there exists m ≥ 0 such that xm ∈ J + (b). Then xn+m ∈ J + (ab), which
means ab /∈ J.

Definition 5.11
Let R be a ring. Then nil(R) =

√
(0) =

{
x : xk = 0,k ≥ 0

}
= {x : x is nilpotent} is called

the nilradical of R.

Corollary 5.20
Let R be a ring. Then

nil(R) =
⋂

p prime
p.

Example 5.8 –

1. If R is a domain, then nil(R) = 0 (because (0) is prime in a domain).

2. nil(Z/300) =
√

(300)/(300) = (30)/(300).

3. The last example hints at the fact that if I ⊆ R is an ideal, then
√
I corresponds to

the ideal nil(R/I) =
√
I/I ⊆ R/I (using the correspondence between ideals (5.10)).

4. Consider (x2y3) ⊆ C[x,y].
√

(x2y3) = (xy). Then the radical corresponds to
nil
(
C[x,y]/(x2y3)

)
= (xy)/(x2y3).

February 3, 2025 The prime ideals that contain (x2y3) are (x), (y), and the maximal ideals of the form (x,y+
b), (x+ a,y) for a,b ∈ C (the fact that these are the only maximal ideals is a deeper fact).
Hence, √

(x2y3) = (xy) = (x)∩ (y)∩
⋂
b∈C

(x,y+ b)∩
⋂
a∈C

(x+ a,y).

The last two intersections are unnecessary, since each ideal is contained in either (x) or (y).

Definition 5.12
p ⊇ I is called a minimal prime of I if

1. p is prime,

2. there are no prime q such that p ⊃ q ⊇ I.

By Zorn’s lemma, given any prime p ⊇ I, there exists a minimal prime p̃ such that p ⊇ p̃ ⊇ I.
Therefore, we can more efficiently write the radical of an ideal:
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Theorem 5.21
Let I ⊆ R be an ideal. Then √

I =
⋂

p̃ min’l prime of I

p.

In particular,
nil(R) =

⋂
p̃ min’l prime of R

p.

5.8. Jacobson’s radical
Definition 5.13
Given a ring R, define its Jacobson radical as

jac(R) := rad(R) :=
⋂

m maximal

m.

Then nil(R) ⊆ rad(R).

Proposition 5.22
Fix a unit u ∈ R× (usually u = 1). Then a ∈ rad(R) ⇐⇒ u+ xa ∈ R× for all x ∈ R.

Proof. Suppose a /∈ rad(R). Then there exists a maximal m not containing a. So a+m is
nonzero (hence a unit) in R/m. So there exists x such that x(a+m) + u = 0+m ∈ R/m.
So u+ ax ∈ m =⇒ u+ ax /∈ R×.

Conversely, suppose u+ ax /∈ R×. Then (u+ ax) is a proper ideal, so it is contained
in some maximal ideal m. We have u /∈ m =⇒ ax /∈ m =⇒ a /∈ m, so a /∈ rad(R).

Example 5.9 –

rad(C[x,y]/(x2y3)) =

( ⋂
b∈C

(x,y+ b)∩
⋂
a∈C

(x+ a,y)

)
/(x2y3).

It turns out this coincides with nil(C[x,y]/(x2y3)).

5.8.1. Special case: local rings

Definition 5.14
We say a ring R 6= 0 is local if there is only one maximal ideal, m.

Proposition 5.23
R is local with m ⊆ R ⇐⇒ any x /∈ m is a unit ⇐⇒ R \ R× is an ideal (and m = R \ R×).
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Example 5.10 –

1. If R is a field, R is local because (0) is the only proper ideal.

2. Let k be a field, then define the power series ring as

k[[t]] :=

∑
i≥0

ait
i | ai ∈ k

 .

We have the famous identity

(1+ t+ t2 + · · · )(1− t) = 1,

so (1− t) ∈ k[[t]]×. This extends to show any 1− tp(t) is a unit, which further
extends to show that a0 + a1t+ · · · is a unit if a0 6= 0. Hence,

k[[t]] = k[[t]]× t (t),

so k[[t]] is local with maximal ideal (t).

5.9. Modules
Definition 5.15

February 5, 2025 Let R be a ring. An R-module M is an abelian group plus a multiplication operation
· : R×M→M that is (1) distributive (both kinds), (2) associative, (3) unitary 1 ·m = m.

Example 5.11 –

1. If k is a field, k-modules are k-vector spaces.

2. Z-modules are abelian groups (multiplication doesn’t add any structure).

Example 5.12 – Let k be a field, V a vector space over k, andG a group. A representation
ρ : G→ GL(V) is a k-linear G-action.

Define the R = k[G] (the group algebra ofG) as linear combinations of group elements:

k[G] =

∑
γ∈G

cγγ : cγ ∈ k, finitely many cγ are nonzero

 .

Define the product as
γ · γ ′ := γγ ′︸︷︷︸

product inG

,

and extend to a bilinear map · : k[G]× k[G] → k[G] over k. The identity is e. In fact,
k→ k[G] : c 7→ cemakes this a k-algebra.

Now, any representation of G/k is automatically a k[G]-module and any k[G]-module
is a representation of G/k.

Note that k[G] is commutative ⇐⇒ G is abelian.
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Definition 5.16
Let M be an R-module. A submodule N ⊆ M is a subgroup that is closed under multi-
plication, i.e., R ·N ⊆ N.

Given a submodule N ⊆M,M/N is naturally an R-module.

Definition 5.17
Let M be an R-module. If m ∈ M, the annihilator of m is Ann(m) := {x ∈ R : xm = 0}.
The annihilator of M is Ann(M) := {x ∈ R : xm = 0 for allm ∈M}.

Let’s start defining the category.

Definition 5.18
A module homomorphism is an R-linear homomorphism of abelian groups.

Given ϕ : M → N, ker(ϕ) ⊆ M, im(ϕ) ⊆ N are submodules. The fundamental theorems
(as with other algebraic structures) apply.4

Given R-modules {Mα}, we have a product and direct sum.
∏
αMα ⊇ ⊕

αMα (recall in a
direct sum, all but finitely many entries are zero, whereas the product has no such restriction).
Categorically, the product is a categorical product:

Mα

N
∏
αMα

ϕα

∃!

πα

and the direct sum is a categorical coproduct:

Mα

N
⊕
αMα

ϕα ια

∃!

Suppose M,N are R-modules. If ϕ,ψ : M → N are R-module homomorphisms, then so is
rϕ+ sψ for r, s ∈ R (this only happens because R is commutative!). As a result, HomR-mod(M,N) =:
HomR(M,M) is an R-module.

In particular, we have that the endomorphisms of a moduleM, EndR-mod(M) := EndR(M) :=
HomR(M,M) form an R-module, but also carries a composition operation (◦). So (EndR(M),+, ◦)
is a ring with 1 = idM. In addition, for r ∈ R, r · idM ∈ EndR(M). We consider the map r 7→
r · idM. Then the R-module structure on End(M) can be viewed as setting r ·ϕ := (r · idM) ◦ϕ.

Remark 5.24. Here’s an equivalent definition of a module. Let M be an abelian group. Then
EndZ(M) is a ring. Under some ring map R→ EndZ(M), we get an R-module structure.

February 7, 2025 To restate the result in the above remark, given an abelian groupM, we have the correspon-
dence {

R-module structues
onM

} ←→ {ring homomorphisms
R→ EndZ(M)

}
.

4One possible explanation is that the category of R-modules, R-Mod forms an abelian category.
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Example 5.13 – We use this correspondence to describe R-modules for various rings.
The main object of note will be HomRing(R,S) for an arbitrary ring S, which we will later
specialize to S = EndZ(M).

• If R = Z, HomRing(R,S) always has a unique morphism for all rings S. With the
correspondence, this means all abelian groupsM are Z-modules.

• If R = Z/n, HomRing(R,S) has a unique morphism if n = 0 in S for some n ∈ Z,
and none exist if n 6= 0 for all n. The corresponding R-modules are abelian groups
Mwith n ·M = 0.

• If R = Q, a unique morphism in HomRing(R,S) exists when n · 1 ∈ S× when
n ∈ Z \ {0}. The corresponding R-modules are those such that the map x 7→ n · x
is bijective for all n 6= 0 (in other words, the group is divisible and torsion-free).

• If R = Z[x], any morphism in HomRing(R,S) is uniquely determined by the image
of x. The corresponding R-modules are abelian groups M together with a map
A : M→Mwhich represents “multiplication by x.”

• If R = Z[x,y], any morphism in HomRing(R,S) is uniquely determined by the
image of x and y, say, α,β, but we also impose that α and β commute (recall,
EndR(M) is not necessarily commutative!). The corresponding R-modules are
abelian groups M together with commuting maps A,B : M → M representing
“multiplication by x and y.”

• If R = R[x], any morphism ϕ ∈ HomRing(R,S) is uniquely determined by the
image of R and the image of x. However, we also need to impose that ϕ(x) com-
mutes with all of ϕ(R) ⊆ S. The corresponding R-modules are abelian groups M
that are R-modules (R-vector spaces) with a mapA : M→M that commutes with
“scaling” by R (i.e., A is R-linear).

Exercise 5.1. What are the corresponding R-modules when R = C[x,y]/(x2 + y2 − 1)?

5.10. Free modules
February 10, 2025 Definition 5.19

LetM be an R-module and consider a collection of elements {xα}α∈I ⊆M. The submod-
ule generated by {xα} is

〈xα〉 :=


∑
α

finite

cαxα

 .

We say the xα’s are linearly independent if for every finite combination
∑

α
finite

cαxα =

0 implies cα = 0 for all α.
We say the {xα} forms a basis if they generateM and are linearly independent.

Definition 5.20
Given an indexing set I, the free module on I is the module

R⊕I := {(cα) | almost all cα’s are zero} .“almost all”
means all but
finitely many.
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Given any moduleMwith a subset indexed by I, we have a map

ϕ : R⊕I →M

(cα) 7→∑
α

cαxα

So M being generated by {xα} is the same as ϕ being surjective, the xα’s being linearly inde-
pendent is the same as ϕ being injective.

Definition 5.21
M is free R-submodule if a basis exists (equivalently,M ∼= R⊕I for some I using the map
ϕ above).
M is finitely generated (f.g.) if there exists a finite set of generators (in other words,

M ∼= Rn/N for some submodule N ⊆ Rn).

Non-Example 5.1 (Non-free modules) –

1. Z/2 as a Z-module.

2. Q as a Z-module (you cannot find more than one linearly independent element).

3. Any non-principal ideal I ⊆ C[x,y] (e.g., (x,y)) as a C[x,y]-module, since if we
have f,g ∈ I, then fg− gf = 0.

Remark 5.25. R⊕I has a universal mapping property. Let eα ∈ R⊕I be the element that is 1 in
the αth entry and 0 everywhere else. Given anyM and {xα} ⊆M, there exists a unique map

ϕ : R⊕I →M

such that ϕ(eα) = xα.

Theorem 5.26
If R is a PID andM is a free R-module, any submodule N ⊆M is free.

Proof (sketch). Idea: Let M ∼= R2. Consider the intersection with the x-axis: N ∩ (R×
{0}). Since R is a PID, this intersection is generated by e1 := (a, 0). Now project N onto
the y-axis: π2(N) ⊆ R, and let it be generated by b. Suppose e2 := (c,b) ∈ π−12 (N).
Then prove e1, e2 for a basis for N (warning: if either a or b are zero, then omit the
corresponding basis element).

General finite case: IfM ∼= Rm, consider the module Rk for k ≤ m embedded into Rm

where the first k coordinates are in R, and the rest are zero (by abuse of notation, denote
it Rk). Let

πk : R
k → R

give the kth coordinate. Consider πk(N∩ Rk) ⊆ R. R is a PID, so it is generated by some
(ak). Let ek = (∗, . . . , ∗,ak, 0, . . . , 0) ∈ π−1k (ak). Now prove that {ek : ak 6= 0} forms a
basis for N.

General case: See book.

5.11. Exact sequences
February 12, 2025
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Consider modulesM1,M2,M3 and morphisms such that

M1
f
−→M2

g
−→M3.

We say this is exact if im f = kerg. Note that if im f ⊆ kerg, gf = 0.
In general, for a sequence {Mi} of modules are morphisms such that

· · ·→Mi−1 →Mi
f
−→Mi+1

g
−→Mi+2 →Mi+3 → · · ·

we say it is exact at Mi+1 if im f ⊆ kerg. The sequence is exact if it is exact at allMi.

Example 5.14 (Important exact sequences) –

1. a) The exactness of 0→ L
ϕ
−→M is the same as ϕ being injective (L embeds into

M).

b) The exactness of L ϕ
−→M→ 0 is the same as ϕ being surjective.

c) ...so the exactness of 0 → L
ϕ
−→ M → 0 is the same as ϕ being an isomor-

phism.

2. a) The exactness of 0 → L → M
ϕ
−→ N means that the image of L in M is the

kernel of ϕ.

b) The exactness ofM ϕ
−→ N→ P → 0means that P is isomorphic to N/ imϕ.

If ϕ : M→ N is a morphism, the cokernel is defined as cokerϕ := N/ imϕ.

c) ...so since the kernel and image exist for any morphism ϕ : M → N, we can
include it into an exact sequence

0→ L︸︷︷︸
kerϕ

→M
ϕ
−→ N→ P︸︷︷︸

cokerϕ

→ 0.

3. A short exact sequence is an exact sequence of the form

0→ L→M→ N→ 0.

This is equivalent to:

• L ↪→M and N is its cokernel,

• M� N and L is its kernel,

• we can identify L as a subset ofM and N =M/L.

In undergraduate algebra, we considered the kernel and cokernel as objects, but for the
future, we will want to consider them as an object together with a morphism (representing
inclusion and projection respectively): i : ker f→M ′, p : M ′′ → coker f.
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Proposition 5.27 (Universal mapping property of ker and coker)
The kernel of a map f : M→M ′′ is a has the following universal mapping property: fi =

0, and if M ′ γ−→M
f
−→M ′′ satisfies gf = 0, then there exists a unique map ϕ : M ′ → ker f

such that iϕ = γ.

ker f M M ′′

M ′

i

0

f

∃!ϕ
γ

0

The cokernel of the map f : M ′ → M has the following universal mapping prop-

erty: pf = 0, and if M ′ f−→ M
γ
−→ M ′′ satisfies gf = 0, then there exists a unique map

ψ : coker f→M ′′ such that ψp = g.

M ′ M coker f

M ′′

f

0

0

p

γ
∃!ψ

Remark 5.28. In an additive category, we take these universal properties to be the definitions
of ker f and coker f. In this abstract case, the kernel (resp. cokernel) is actually the map
i : ker f→M (resp. p : M→ coker f).

Example 5.15 (Splitting) – Given modules L,N, we can form an exact sequence involving
L⊕N by

0→ L
x 7→(x,0)
−−−−−−→ L⊕N (x,y) 7→y

−−−−−−→ N→ 0.

This is called a split short exact sequence. We say a short exact sequence 0 → L →
M → N → 0 splits if there exists an isomorphism M

∼
−→ L⊕N that is compatible with

the given maps: L → M
∼
−→ L⊕N : x 7→ (x, 0), M ∼

−→ L⊕N → N : (x,y) 7→ y. This is
summarized succinctly by the following diagram commuting:

0 L M N 0

0 L L⊕N N 0

=

∼

=

Not all short exact sequences split. In ModZ, the following sequences split

0→ Z/2→ Z/2⊕ Z/2→ Z/2→ 0,

0→ Z/2 ×2
−−→ Z/4 mod 2

−−−−→ Z/2→ 0.

But Z/4 6∼= Z/2⊕ Z/2.
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Theorem 5.29
The following are equivalent:

1. The exact sequence 0→ L→M→ N→ 0 splits.

2. The map g : M→ N admits a section s : N→M (i.e. gs = 1N).

3. The map f : L→M admits a retract r : M→ L (i.e., rf = 1M).

Exercise 5.2. Use the above theorem to prove that every exact sequence of vector spaces splits.

Example 5.16 – LetM have generators {xi}i∈I. This is equivalent to a surjection R⊕I →
M, which is the same as R⊕I π−→ M → 0 being exact. kerπ is a module representing the
relations. Choose a set of generators yj = (yji)i∈I ∈ R⊕I, which we could consider the
“defining relations.” ThenM is the cokernel of the map

R⊕J
φ
−→ R⊕I

π
−→M→ 0.

Definition 5.22
February 14, 2025 A presentation of an R-moduleM is an exact sequence of the form

G→ F→M→ 0,

where G and F are free modules. F represents the generators of M. The image of G
generates the space of relations.

A moduleM is finitely generated if there exists exact G→ F→M→ 0where F, G are
finite rank free modules. We can writeM = Rn/ARm for some A ∈ Matn×m(R).

5.11.1. Exactness and Hom

Recall HomR(M,N) is a functor that is covariant in the N entry and contravariant in the M
entry.

Theorem 5.30
1. If M ′ → M → M ′′ → 0 is exact, then 0 → HomR(M ′′,N) → HomR(M,N) →

HomR(M ′,N) is exact.

2. If 0 → N ′ → N → N ′′ is exact, then 0 → Hom(M,N ′) → Hom(M,N) →
Hom(M,N ′′) is exact.

Proof. (1) Let α be the map from M ′ → M. Then exactness is the same as M ′′ ∼=
cokerα =M/ imα. The UMP of the cokernel says that we have 1-1 correspondence

Hom(cokerα,N)
1−1↔ {f : M→ N | fα = 0} .

The this set is the kernel of Hom(•,N)(α) := α∗, whereα∗ : Hom(M,N)→ Hom(M ′,N).
Thus, Hom(M ′′,N)→ ker(Hom(M,N)→ Hom(M ′,N)) is an isomorphism. Therefore,

0→ HomR(M ′′,N)
α∗
−−→ HomR(M,N)→ HomR(M ′,N) is exact.
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(2) This is a dual proof, so we give the main ideas. Let β be the map from N ′ → N.
Then use the UMP of the kernel:

Hom(M, kerβ) 1−1↔ {f : M→ N | βf = 0} .

Definition 5.23
A module P is projective if whenever we have a surjection β : N → N ′′ and a map
α : P → N ′′, there exists a map γ : P → N such that βγ = α. In other words, the following
diagram commutes:

P

N N ′′

γ
α

β

Theorem 5.31
Let P be a module. The following are equivalent:

1. P is projective.

2. Every short exact sequence 0 → K → M → P → 0 splits (i.e. we have a section
P 99KM).

3. P is a summand of free module. In other words, there exists a free module F so
that F ∼= P⊕Q.

4. IfN ′ → N→ N ′′ is exact, then Hom(P,N ′)→ Hom(P,N)→ Hom(P,N ′′) is exact.

5. If 0→ N ′ → N→ N ′′ → 0 is exact, then

0→ Hom(P,N ′)→ Hom(P,N)→ Hom(P,N ′′)→ 0

is exact.

6. If β : N� N ′′, then β∗ : Hom(P,N)→ Hom(P,N ′′) is surjective.

Proof. ((1) =⇒ (2)) Let 0 → K → M → P → 0 be exact. Consider the identity map
id : P → P. Then there exists a β : P → M such that βγ = idP, which implies γ is our
desired section that splits.

((2) =⇒ (3)) Pick a set of generators for P. Then we have a short exact sequence
0→ K→ F→ P → 0with F a free module. P⊕ K ∼= F by (2).

((3) =⇒ (4)) If F = RΛ, then Hom(RΛ,N) =
∏
λ∈ΛN. Repeating for Hom(RΛ,N ′),

Hom(RΛ,N ′′), we are asking for the exactness of∏
λ∈Λ

N ′ → ∏
λ∈Λ

N→ ∏
λ∈Λ

N ′′,

which follows from the exactness of N ′ → N→ N ′′.
Since Hom(F,N ′)→ Hom(F,N)→ Hom(F,N ′′) is exact, Hom(P,N ′)→ Hom(P,N)→

Hom(P,N ′′) is exact.
((4) =⇒ (5)) Apply (4) at each of the middle three terms.
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((5) =⇒ (6)) Let β : N� N ′′. Then letting N ′ = kerβ gives us that

0→ N ′ → N→ N ′′ → 0

is exact. By (5),

0→ Hom(P,N ′)→ Hom(P,N)→ Hom(P,N ′′)→ 0

is exact, which implies β∗ : Hom(P,N)→ Hom(P,N ′′) is surjective.
((6) =⇒ (1)) If β : N → N ′′ is surjective, then β∗ : Hom(P,N) → Hom(P,N ′′) is a

surjection. Let α ∈ Hom(P,N ′′). Then we can write βγ = α for some γ ∈ Hom(P,N) by
the surjectivity of β∗.

Example 5.17 –

1. Free modules are projective (use (3)).

2. If R = A×B, where R,A,B are rings, then R = (A× 0)⊕ (0×B) as a module. Each
A× 0 and 0× B are projective, but not free if A 6= 0, B 6= 0.

3. From number theory, we have that R = Z[
√
−5] is not a UFD because, e.g. the

ideals I = (3, 1+
√
−5), I ′ = (3, 1−

√
−5). I and I ′ (as R-modules) are projective

but not free, which we will prove. One can show that I and I ′ are not principal.
However, they are maximal because R/I ∼= R/I ′ ∼= Z/3. We can check that I 6= I ′,
so I and I ′ are comaximal. By CRT, I ∩ I ′ = II ′, which turns out to be (3), a free
R-module. So it fits into an exact sequence

0→ I∩ I ′︸ ︷︷ ︸
∼=R

→ I⊕ I ′ → R→ 0,

hence I⊕ I ′ ∼= R⊕ R, so each ideal is projective.

Remark 5.32. There is a “dual” notion of a projective module. An injective module is a
module Q such that, given an exact sequence

0→M ′ →M→M ′′ → 0,

the induced sequence

0→ Hom(Q,M ′)→ Hom(Q,M)→ Hom(Q,M ′′)→ 0

is exact.

5.12. Tensor products
Definition 5.24

February 17, 2025 Let R be a ring and M,N,P R-modules. β : M×N → P is bilinear if β(m +m ′,n) =
β(m,n)+β(m ′,n), β(m,n+n ′) = β(m,n)+β(m,n ′), β(rm,n) = rβ(m,n) = β(m, rn).
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Definition 5.25
If M and N are R-modules, the tensor product M⊗R N (also written M⊗N when the
ring R is clear) is the quotient

M⊗RN := RM×N/A,

where

A = 〈(m+m ′,n) − (m,n) − (m ′,n), (m,n+n ′) − (m,n) − (m,n ′),

(rm,n) − r(m,n), r(m,n) − (m, rn) : m,m ′ ∈M,n,n ′ ∈ N, r ∈ R〉.

Writem⊗ n as the image of (m,n) inM⊗N under the above quotient.

Theorem 5.33 (Universal mapping property of ⊗)
IfM,N,P are R-modules, then

HomR(M⊗N,P) ∼= BilR(M×N,P),

where the RHS are bilinear maps fromM×N to P.

Proof (sketch). Recall Hom(RM×N,P) is precisely (set) mapsM×N→ P. The quotient
mapping property guarantees the only maps Hom(RM×N/A,P) are bilinear maps.

The tensor product is commutative and associative. We have M⊗ R ∼= M (so M⊗ R⊕n ∼=
M⊕n). We also have “distributivity:”

M⊗
(⊕
α

Nα

)
∼=
⊕
α

M⊗Nα.

5.12.1. Hom-tensor adjunction

Proposition 5.34
We have a bijection

BilR(M×N,P) ∼
−→ Hom(M, Hom(N,P))

given by the map β 7→ [m 7→ β(m,−)].

We’ll prove a more powerful version (5.35).

Definition 5.26
Let R,R ′ be rings. An (R,R ′)-bimodule N is an abelian group with R-module and R ′-
module structures that “play nicely” with each other:

r(r ′n) = r ′(rn)

for r ∈ R, r ′ ∈ R ′, n ∈ N.
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Example 5.18 –

1. If N is an R-module, then it is automatically an (R,R)-bimodule, where we have
the same action for both rings.

2. If f : R → R ′ is a ring homomorphism, then R ′ is an (R,R ′)-bimodule, where the
R-action comes from the R ′-action using f(r).

Theorem 5.35
Let R, R ′ be rings,M and R-module, N an (R,R ′)-bimodule, P an R ′-module. Then

HomR ′(M⊗RN,P) ∼= HomR(M, HomR ′(N,P)).

Remark 5.36. We’ll need to showM⊗RN is an R ′-module and HomR ′(N,P) is an R-module.

Proof of Theorem 5.35. On the LHS, we have

HomR ′(M⊗RN,P) = {β : M×N→ P | β is biadditive,

β(m, rn) = β(rm,n),β(m, r ′n) = r ′β(m,n), r ∈ R, r ′ ∈ R ′}.

On the RHS, assume that maps in HomR(M, HomR ′(N,P)) can be written as [m 7→
β(m,−)], hence we can consider it as a single map β : M×N → P (this is a general
tehcnique called currying). One can verify that

HomR(M, HomR ′(N,P)) = {β : M×N→ P | β is biadditive,

β(m, rn) = β(rm,n),β(m, r ′n) = r ′β(m,n), r ∈ R, r ′ ∈ R ′},

which corresponds with what we wrote above.

5.12.2. Exactness

Definition 5.27
A functor F : ModR → ModR ′ is left exact if it preserves kernels. M ′ is a kernel if and
only if it fits into an exact sequence 0 → M ′ → M → M ′′. Then F being left exact is the
same as 0→ FM ′ → FM→ FM ′′ being exact.
F is right exact if it preserves cokernels. M ′′ is a cokernel if and only if it fits into

an exact sequence M ′ → M → M ′′ → 0. Then F being right exact is the same as
FM ′ → FM→ FM ′′ → 0 being exact.
F is exact if it is both left and right exact. Equivalently, if M ′ → M → M ′′ is exact,

then FM ′ → FM→ FM ′′ is exact.

We showed before that Hom is left exact in both arguments (5.30).

Theorem 5.37 (−⊗N is right exact)
The tensor product is right exact both arguments: if M ′ → M → M ′′ → 0 is exact, then
so isM ′ ⊗N→M⊗N→M ′′ ⊗N→ 0.

Remark 5.38. Stating the theorem for the other argument is redundant since the tensor prod-
uct is commutative.
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Remark 5.39 (How to remember this theorem if you know category theory). The tensor prod-
uct and the cokernel are both colimits, and colimits commute.

Proof. Let M ′′ be the cokernel of a map M ′ → M. In other words, it fits in an exact
sequence

M ′ f−→M
g
−→M ′′ → 0.

Using pullbacks, we can create a sequence

0→ Hom(M ′′, Hom(N,P))
g∗
−→ Hom(M, Hom(N,P)) f

∗
−→ Hom(M ′, Hom(N,P)).

By the Hom-tensor adjunction,

0→ Hom(M ′′ ⊗N,P)→ Hom(M⊗N,P)→ Hom(M ′ ⊗N,P)

is also exact. This shows that M ′′ ⊗N is the cokernel of M⊗N → M ′ ⊗N using the
universal mapping property of the cokernel again.

5.12.3. Some special examples of tensor products

Example 5.19 –February 19, 2025 This right-exactness property is useful for actual computations. Let M
be an R-module defined byM = Re1⊕Re2/ 〈(r, s)〉 for basis elements e1, e2 and r, s ∈ R.
ThenM belongs to the sequence

R
f
−→ R⊕2 →M→ 0,

where f(α) = (rα, sα). Let N be any R-module. We wish to compute M ⊗N. Right
exactness implies

N
f⊗idR−−−−→ N⊕2 →M⊗N→ 0

is exact. The map f⊗ idR sends n 7→ (rn, sn) = (re1 + se2)n. Therefore, M⊗N “looks
like” (e1 ⊗N)⊗ (e2 ⊗N)/ 〈re1 ⊗ n+ se2 ⊗ n : n ∈ N〉.

Example 5.20 – ConsiderM⊗R (R/I). R/I fits into an exact sequence

I→ R→ R/I→ 0.

By right exactness of the tensor,

M⊗ I→M⊗ R→M⊗ (R/I)→ 0.

The elements of M⊗ I are m⊗ x for x ∈ I. These map to m⊗ x ∈ M⊗ R, which can be
identified inMwith xm. Hence,M⊗ (R/I) ∼=M/IM.

Remark 5.40.February 21, 2025 The map I→ R above is injective, but the tensor product is only right exact, so
M⊗ I→M⊗ R is not generally injective, so we don’t haveM⊗ I ∼= IM.

For example, if R = Z and I = (2), then we have an exact sequence

0→ Z
×2
−−→ Z→ Z/2→ 0.

Then, tensoring withM, we have that

M
×2
−−→M→M/2M→ 0
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is exact. ButM ×2
−−→Mmy not be injective (see Non-Example 5.2).

Let R ′ be an R-algebra. Then we can consider R ′ as an R-module. LetM be an Rmodule and
consider M⊗R R ′. This has an R ′-module structure by s(m⊗ r ′) := m⊗ (sr ′), for s, r ′ ∈ R ′,
m ∈M, and extending by linearity. We call this an extension of scalars from R to R ′.

Example 5.21 – If R = R, R ′ = C,M = Rn. Then

Rn ⊗R C = Cn.

Concretely, if a ∈ Rn and x+ yi ∈ C, thena1...
an

⊗ (x+ yi) =

xa1...
xan

⊗ 1+

ya1...
yan

⊗ i.

So generally, −⊗R C gives a functor

VectR → VectC,

which we call complexification. The nice thing about this compared to the undergradu-
ate treatment is that this description is basis-free.

Example 5.22 (Tensor over rings) – If R = Z, R ′ is any ring, andM = Z/n, then

Z/n⊗Z R = R/nR.

For example, if R ′ = Q,
Z/n⊗Z Q = 0.

Remark 5.41. If N is an (R,R ′)-bimodule, then M⊗R N is an R ′-module. In particular, R ′ is
an (R,R ′)-bimodule, explaining whyM⊗R R ′ could be viewed as an R ′-module.

Remark 5.42 (Cautionary tale; what goes wrong with infinity products). Consider R∞ ⊗R

R[x] (where R∞ is the infinite direct product of R’s). We claim this is not (R[x])∞. Indeed,
simple tensors in R∞ ⊗R R[x] are

(a1,a2, . . . )⊗ (c0 + c1x+ · · ·+ ckxk) = (c0a1, c0a2, . . . )⊗ 1+ · · ·+ (cka1, cka2, . . . )⊗ xk.

Since elements of the tensor product of finite sums of such elements, the degree of each entry
is “uniformly bounded”. Hence, R∞ ⊗R R[x] ∼= (R∞)[x]. An element not in this ring is
(1, x, x2, . . . ).

Remark 5.43 (Restriction of scalars). M⊗R R ′ has universal mapping property from ⊗R. It
has a different universal mapping property as an R ′ module: for M an R-module and N an
R ′-module, given R-linear f : M→ N, it uniquely factors through the surjective R ′-linear map
M⊗R R ′ → N.

M M⊗R R ′

N

∃!

f
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5.13. Interlude: category theory, limits, and colimits
February 24, 2025 Recall category theory from last semester. Here are some recent examples of functors:

Example 5.23 – The tensor product is a functor

−⊗−: ModR × ModR → ModR.

Extension of scalars is a functor

−⊗R R ′ : ModR → ModR ′

(implicitly, we need to show M → M ′ induces a map M ⊗R R ′ → M ′ ⊗R R ′ that is
functorial).

The HomR(−,−) functor is contravariant in the first input and covariant in the second.
In other words,

HomR(−,−): (ModR)op × ModR → ModR.

Definition 5.28
Let C , D be categories. Define Fun(C , D) be a category where

• objects are functors C → D ,

• morphisms are natural transformations. Recall that given F,G : C → D , a natural
transformation η : F → G consists of morphisms η(A) : FA → GA such that the
following diagram in D commutes

A FA GA

B FB GB

ϕ

η(A)

F(ϕ) G(ϕ)

η(B)

If each η(A) is an isomorphism for A ∈ C , then we say that η is a natural isomor-
phism, denoted F'G.

Definition 5.29
A functor F : C → D is an equivalence (of categories) if there exists a functor G : D →
C such that the functor F ◦ G is naturally isomorphic to IdD and the functor G ◦ F is
naturally isomorphic to IdC . We call G a quasi-inverse to F.

Example 5.24 – Let k be a field and Vectf.d.
k be the space of finite-dimensional k-vector

spaces. Consider the dual functor

•∨ :
(

Vectf.d.
k

)op → Vectf.d.
k : V 7→ V∨ = Hom(V ,k).

We can take the double dual, which is a functor(
•∨
)∨

: Vectf.d.
k → Vectf.d.

k : V 7→ (V∨)∨ = Hom(V∨,k).
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This turns out to be an equivalence of categories.

Example 5.25 (Idempotents) – Consider the category Idem where objects are pairs (R, e),
where R is a ring and e ∈ R is an idempotent. Morphisms (R, e)→ (R ′, e ′) are morphisms
ϕ : R→ R ′ such that ϕ(e) = e ′. Now consider the category Ring × Ring.

There is an equivalence of categories given by the functors

F : (R, e) 7→ (R/(e),R/(1− e)),

G : (R1,R2) 7→ (R1 × R2, (0, 1)),

(implicitly, we have to show these are indeed functors).

Theorem 5.44
AFebruary 26, 2025 functor F : C → D is an equivalence of categories if and only if

1. F is fully faithful: for all C,C ′ ∈ C , the induced map

HomC (C,C ′)
F
−→ HomD (FC, FC ′)

is a bijection.

2. F is essentially surjective: for all D ∈ D , there exists C ∈ C such that FC ∼= D.

Proof sketch of ⇐= . We construct the quasi-inverse functor G : D → C . For eachD ∈
D , choose some C ∈ C and an isomorphism ϕD : FC

∼
−→ D. Set GD := C. Now if we

have a morphism f ∈ Mor(D,D ′), let G(f) ∈ HomC (C,C ′) that is the preimage of the
morphism f̃ := ϕ−1

D ′ fϕD ∈ HomD (FC, FC ′)

FC D

FC ′ D ′

∼

f̃ f

∼

To do after this: verify this is a functor, verify that G is a quasi-inverse.

If we only make the fully faithful assumption, define the essential image of F as

Im(F) := {D ∈ D : F(C) ∼= D for some C ∈ D} .

The essential image is a subcategory of D and F is an equivalence of categories between C
and Im(F).

Definition 5.30
A full subcategory is a subcategory C ⊆ C ′ such that HomC ′(A,B) = HomC (A,B) for
all objects A,B ∈ C .

Example 5.26 – AbGp ⊆ Grp is a full subcategory.
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Corollary 5.45
F is fully faithful if and only if it gives an equivalence between C and a full subcategory
of D .

We call F a full embedding.
Proverb. The best things in life are equivalences of categories.

Example 5.27 – Let X be path-connected and x ∈ X. Then there is an equivalence of
categories

Cov(X) := {Covering spaces of X} ∼
−→ GSet,

where G = π1(X, x).

5.13.1. The Yoneda lemma

Consider hA(−) := HomC (A,−) as a functor C → Set. We have a functor h• : C op →
Fun(C , Set) given by A 7→ hA(−) and f ∈ Hom(A,B) maps to the natural transformation
f∗ : hB(−)→ hA(−), defined for g ∈ Hom(C,C ′) as

Hom(B,C) Hom(A,C)

Hom(B,C ′) Hom(A,C ′)

f∗(C)

g∗(hB) g∗(hA)

f∗(C ′)

where
h h ◦ f

g ◦ h g ◦ h ◦ f

We call this the Yoneda embedding.

Theorem 5.46
The Yoneda embedding is fully faithful.

Dually, there is a functor hA(−) := HomC (−,A), which gives us a functor C → Fun(C op, Set)
given by A 7→ hA(−). The same results follow.

To prove this, we prove the following stronger statement:

Theorem 5.47 (Yoneda lemma)
1. Given A ∈ C and F ∈ Fun(C , Set), there is an isomorphism

HomFun(C ,Set)(hA, F)→ FA

ϕ 7→ ϕ(A)(idA).

2. If we view both sides of the equality as functors,

C × Fun(C , Set)→ Set,

then this isomorphism is natural.
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February 28, 2025 This theorem gives us a categorical framework for universal mapping properties, which we
will now describe.

Definition 5.31
Given F : C → Set, F is representable if there exists A ∈ C such that F ' hA (or F ' hA).
We say A represents the functor F.

Proposition 5.48
If F is representable, the representing object A is unique up to natural isomorphism.

Proof. If hA ' F and hB ' F, then there is a natural isomorphism hA ' hB. Since the
Yoneda embedding is fully faithful, this isomorphism comes from some isomorphism
A ∼= B.

Example 5.28 (Tensor products via Yoneda) – Let A,B ∈ ModR. We construct a func-
tor ModR → Set as follows: given X ∈ ModR, consider all bilinear maps BilR(A,B;X).
For this to be a functor, we need to check composition (and identity, but that’s okay).
Given a homomorphism X → Y, we have a map BilR(A,B;X) → BilR(A,B;Y) with this
homomorphism.

A× B X

Y

We now can give an alternative definition of the tensor product: A ⊗R B is the R-
module representing the functor BilR(A,B; −). Once we verify that the functor is repre-
sentable (by constructing the tensor product), we immediately get that the tensor prod-
uct is unique up to isomorphism.

Example 5.29 (Extensions of scalars via Yoneda) – Let R→ R ′ be a structure map andA an
R-module. Consider the extension of scalars of A, which we denote ExR

′
R (A) ∈ ModR ′ .

Consider the functor

ModR ′ → Set
X 7→ HomR(A,X).

Then ExR
′
R (A) is the representing object is the same as saying HomR ′(ExR

′
R (A),X) =

HomR(A,X) for any X ∈ ModR ′ .

Example 5.30 (Restriction of scalars and some adjoint functors) – Given X ∈ ModR ′ , we
have a restriction of scalars ResR

′
R : ModR ′ → ModR. We have that

HomR ′(ExR
′
R (A),X) = HomR(A, ResR

′
R (X)).

Something to note: if we knew how the extension of scalars functor ExR
′
R , then finding
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ResR
′
R (X) is the same as finding the representing object (hA this time, not hA) of

ModR ′ → Set

A 7→ HomR ′(ExR
′
R (A),X).

The pair (ExR
′
R , ResR

′
R ) is an example of a pair of left/right adjoint functors. Theo-

rem 5.46 implies that if a left adjoint exists, then it is unique up to natural isomorphism.
By applying the theorem to the opposite category, we have that if a right adjoint exists,
then it is unique up to natural isomorphism.

Example 5.31 (Free-forgetful adjuction) – Let G : Grp→ Set be the functor that “forgets”
a group H is a group. We claim a left-adjoint exists. In other words, given H ∈ Grp and
X ∈ Set, we have

HomGrp(F(X),H) = HomSet(X,G(H)).

The left adjoint is precisely given by the free group functor F : Set → Grp that makes a
free group on a set.

This is a common example of a left/right adjoint pair: the right adjoint is a forgetful
functor and the left adjoint is “free,” however we ask to define it.

We have a forgetful functor Ring→ AbGp. The associated free functor is

A 7→ A⊗0︸︷︷︸
∼=Z

⊕A⊕A⊗2 ⊕ · · · ⊕A⊗n ⊕ · · ·

Example 5.32 – The notion of currying, that is, Hom(X× Y,Z) = Hom(X, Hom(Y,Z))
by f 7→ [x 7→ f(x,−)] in Set (or any other category that is “Set with extra structure”) is
the statement that (−× Y, Hom(Y,−)) is an adjoint pair.

Proof of Theorem 5.47 (1).March 03, 2025 We construct an explicit inverse. Let x ∈ FA. For B ∈ C
and f ∈ hA(B) = Hom(A,B), define

x̃B(f) := F(f)(x) ∈ FB.

Thus, x̃B is a morphism Hom(A,B)→ FB. We claim x̃• : hA → F is a natural transforma-
tion. Let g ∈ Hom(B ′,B). It suffices to show the following diagram commutes:

Hom(A,B) Hom(A,B ′)

FB FB ′

g∗

x̃B x̃B ′

F(g)

Let f ∈ Hom(A,B). Then

(x̃B ′ ◦ g∗)(f) = x̃B ′(g ◦ f) = F(g ◦ f)(x).

On the other hand,

(F(g) ◦ x̃B)(f) = F(g)(F(f)(x)) = F(g ◦ f)(x).
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Now we show these operations are inverses. If x ∈ FA, then

x̃A(idA) = F(idA)(x) = x.

On the other hand, if ϕ ∈ Hom(hA, F), then

( ˜ϕ(A)(idA))B(f) = F(f)(ϕ(A)(idA)).

Since the following diagram

hA(A) hA(B)

FA FB

f∗

ϕ(A) ϕ(B)

F(f)

commutes,

F(f)(ϕ(A)(idA)) = ϕ(B)(f∗(idA))
= ϕ(B)(f).

It follows that ϕ = ˜ϕ(A)(idA), as desired.

Proof of Theorem 5.46. This follows from replacing F with hB in the Yoneda lemma
(5.47).

5.14. Examples and applications of tensor products

Example 5.33 – LetM ∈ ModR. ThenM⊗n represents the functor

X 7→ { Multilinear maps
M× · · · ×M→ X

}
.

Definition 5.32
A multilinear map µ : M×· · ·×M→ X is symmetric if µ(m1, . . . ,mn) = µ(mσ(1), . . . ,mσ(n))
for all σ ∈ Sn.

Now consider the functor for X ∈ ModR:

X 7→ { Symmetric multilinear maps
M× · · · ×M→ X

}
.

We claim this functor is representable. The representation is the ‘obvious” choice by modding
out by the extra relations that a multilinear map has if it is symmetric:

M⊗n/
〈
m1 ⊗ · · · ⊗mn −mσ(1) ⊗ · · · ⊗mσ(n) : σ ∈ Sn

〉
.

We define this as the nth symmetric power of M, denoted SymnM.

Definition 5.33
A multilinear map µ : M×· · ·×M→ X is skew-symmetric/anti-symmetric if µ(m1, . . . ,mn) =
0whenevermi = mj for i 6= j.
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If 2 is invertible in R, then this is equivalent to

µ(m1, . . . ,mi, . . . ,mj, . . . ,mn) = −µ(m1, . . . ,mj, . . . ,mi, . . . ,mn).

The functor

X 7→ { Skew-symmetric multilinear maps
M× · · · ×M→ X

}
has a representation:

M⊗n/ 〈m1 ⊗ · · · ⊗mn : mi = mj, i 6= j〉 .

We define this as the nth exterior power of M, denoted
∧nM. The image of m1 ⊗ · · · ⊗mn

in
∧nM is denotedm1 ∧ · · ·∧mn.

Example 5.34 (Powers of free modules) – LetM =
⊕n
i=1 Rei be a free module. Then

M⊗d =
⊕

1≤i1,...,id≤n
R(ei1 ⊗ · · · ⊗ ein),

SymdM =
⊕

1≤i1≤···≤id≤n
R(ei1 · · · ein),

∧d
M =

⊕
1≤i1<···<id≤n

R(ei1 ∧ · · ·∧ ein).

Example 5.35 –March 5, 2025 We have a decomposition

R[x1, . . . , xn] =
∞⊕
d=0

Symd(Rx1 ⊕ · · · ⊕ Rxn)

by rewriting polynomials as sums of homogeneous polynomials.

Example 5.36 (Determinants) – IfM = Re1 ⊕ · · ·Ren, then∧n
M = R(e1 ∧ · · ·∧ en).

In fact,
∧nM is a functor: given ϕ : M→M, we have an induced map

∧nϕ :
∧nM→∧nM that does the map on each basis element (extended by linearity). Since
∧nM is

free of rank 1,
∧nϕ represents multiplication by an element of R. Define detϕ :=

∧nϕ.
Upshot: basis-free definition of the determinant! Moreover, since

∧nM is a functor,
for ϕ,ψ ∈ Hom(M,M) we have that detϕψ = detϕ · detψ by functoriality. This gives
a fast proof of the determinant being multiplicative.

Let S1,S2 be R-modules, and consider S1 ⊗R S2. This has a natural R-algebra structure:
addition is as usual. Define the product on simple tensors as

(s1 ⊗ s2)(s ′1 ⊗ s ′2) = (s1s
′
1)⊗ (s2s

′
2),

and extend by linearity. The structure map R→ S1 ⊗R S2 is given by r 7→ r(1⊗ 1) = (i1(r)⊗
1) = (1⊗ i2(r)). Of course, you need to verify that this actually makes S1 ⊗R S2 a ring.
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Example 5.37 – Let S1 = R[x]. Then S1 is a free R-module with basis
{
xi : i ≥ 0

}
. Then

if S2 is another R-algebra, then

S1 ⊗ S2 = S2[x] =
∞⊕
i=0

S2 · xi.

In the category R-Algcomm of (commutative) R-algebras, S1 × S2 is the product and S1 ⊗ S2
is the coproduct.

Let R,S be rings and consider a (R,S)-bimoduleM. Define

(r⊗ s)m := r(ms) = (rm)s.

Proposition 5.49
A (R,S)-bimodule is the same as a (R ⊗Z S)-module with scalar products defined as
above.

Remark 5.50. If we don’t require that R and S commute then a (R,S)-bimodule is the same as
a (R⊗Z S

op)-module.

5.15. Flatness
March 7, 2025 Recall that −⊗RN is right-exact. In other words, a short exact sequence

0→M ′ →M→M ′′ → 0

induces an exact sequence

M ′ ⊗N→M⊗N→M ′′ ⊗N→ 0. (5.1)

It not necessarily left-exact (see Remark 5.40). N being flat means we can extend (5.1) to a
short exact sequence.

Definition 5.34
An R-moduleN is flat if −⊗RN is exact (Equivalently: left-exact. Equivalently: ifM ↪→
M ′, thenM⊗N ↪→M ′ ⊗N).

We’ve seen this idea before: Hom(M,−) is a left-exact functor, but ifM is projective, then it
is also right-exact.

Example 5.38 –

1. 0 is flat.

2. R is flat (over R).

3. If M1 and M2 are flat, M1 ⊕M2 is flat because (M1 ⊕M2)⊗N = (M1 ⊗N)⊕
(M2 ⊗ N) and direct sums of exact sequences are exact. Since tensor products
commute with arbitrary direct sums, if {Mα} is a collection of flat modules, then⊕
αMα is flat. This implies, e.g., all free modules are flat.
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Fact 5.51. Given sequences

0→M ′ →M→M ′′ → 0,

0→ N ′ → N→ N ′′ → 0,

the induced sequence

0→M ′ ⊕N ′ →M⊕N→M ′′ ⊕N ′′ → 0

is exact if and only if the first two are.

4. As a consequence, projective modules are flat.

Example 5.39 (The rank of a Z-module) – Q, viewed as a Z-module, is flat, but not
projective (take the fact that Q is flat for granted, but you can prove Q is not projective).

Let
0→ A ′ → A→ A ′′ → 0

be an exact sequence of Z-modules (abelian groups). Then

0→ A ′ ⊗Z Q→ A⊗Z Q→ A ′′ ⊗Z Q→ 0

is exact. But −⊗Z Q is an extension of scalars, making each module a Q-vector space.
Let r(A) = dimQ(A⊗Z Q). Using facts of vector spaces, we have that r is an additive
function (in short exact sequences): if 0 → A ′ → A → A ′′ → 0 is exact, then r(A) =
r(A ′) + r(A ′′).

Consider the moduleA⊗Z Q explicitly. IfA is finitely generated, let its decomposition
be

A ∼= Z⊕n ⊕
⊕
i

Z/di.

Then
A⊗Z Q ∼= (Z ⊗ Q)⊕n ⊕

⊕
i

Q/diQ ∼= Q⊕n.

So r coincides with the traditional notion of the free rank of an abelian group.

Remark 5.52. In ModZ, short exact sequences do not split. The above example extended by
scalars to the category ModQ, where short exact sequences do split.

Proposition 5.53
If R is a domain, its field of fractions F is a flat R-module. As a result, r(M) := dimF(M⊗R
F) is an additive function (in short exact sequences).

To prove this, we will prove a stronger statement about localizations.
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Non-Example 5.2 – Z/p is a Z-module. Define the p-rank, rp as

rp(A) := dimZ/pA⊗Z Z/p = dimZ/pA/pA.

This function is not additive precisely because Z/p is not flat; e.g.,

0→ Z
×p
−−→ Z→ Z/p→ 0

does not become exact under −⊗Z Z/p.

5.16. Localization of rings
Slogan. Localization forms rings of quotients with fewer restrictions.

Definition 5.35
Let R be a ring and S ⊆ R be a multiplicative subset (i.e., S forms a semigroup under ·).
The localization of R with respect to S is the set of pairs (r, s) ∈ R× S, often written r

s
(we will call these fractions), modulo an equivalence that tells us when fractions are the
same (we define this below). Denote this set as S−1R or R[S−1].

To represent fractions that are equal, we may naively give a relation

r1
s1

∼
r2
s2
⇐⇒ r1s2 = r2s1.

Unfortunately, this relation is not transitive. Indeed, if r1s1 ∼ r2
s2

, r2s2 ∼ r3
s3

, then r1s2 = r2s1
and r2s3 = r3s2. This does not imply r1s3 = r3s1. However, this does imply that r1s2s3 =
r3s2s1. This motivates the “correct” equivalence relation:

r1
s1

∼
r2
s2
⇐⇒ there exists s ∈ S such that sr1s2 = sr2s1.

We give R[S−1] a ring structure by

r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2
r1
s1

· r2
s2

=
r1r2
s1s2

1

1
= 1R[S−1].

There exists a natural map

λ : R→ R[S−1],

r 7→ r

1
.

Example 5.40 –

1. If S ⊆ R×, then r
s ∼ rs

−1

1 . Therefore, λ is an isomorphism.

2. If R is a domain and S = R− {0}, then R[S−1] is the field of fractions.
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3. If 0 ∈ S, then R[S−1] = 0.

Warning: λ is not necessarily injective. Suppose λ(r1) = λ(r2) Then there exists s ∈ S such
that s(r1 − r2) = 0. This does not imply r1 = r2, since S may have zero divisors. In fact, λ is
injective ⇐⇒ S has no zero divisors.

Localization comes with its own universal mapping property.

Theorem 5.54 (Universal mapping property of R[S−1])
Given a ring R, a multiplicative subset S, and a ring map ϕ : R→ X such that ϕ(S) ⊆ X×.
Then there exists a unique morphism ϕ̃ : R[S−1] → X such that the following diagram
commutes:

R R[S−1]

X

λ

ϕ ∃!ϕ̃

Stated more cleanly with representables:

Theorem 5.55
R[S−1] represents the functor

X 7→ {ϕ ∈ HomRing(R,X) : ϕ(S) ⊆ S×
}

.

These two theorems are essentially the same because of a homework problem:

Exercise 5.3. Let F : C → Set be a functor. Show that F is represented by a ∈ C if and only if
there exists α ∈ F(a) such that for any b ∈ C and β ∈ F(b), there exists a unique f ∈ Mor(a,b)
such that F(f)(α) = β.

Example 5.41 – Let f ∈ R. Consider the multiplicative subset S =
{
fk : k ≥ 0

}
. We

consider R[S−1] (sometimes denoted R[f−1] or Rf).

Proposition 5.56
Rf = R[t]/(tf− 1).

A direct way to prove this would be by the map 1
f 7→ t. We’ll do a more fancy proof.
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Proof. By the representability of R[S−1] (5.55), we can see easily that Rf represents
the functor

X 7→ {ϕ ∈ HomRing(R,X) : ϕ(f) ∈ X×
}

(5.2)

On the other hand, R[t] represents the functor

X 7→ {(ϕ, τ) ∈ HomRing(R,X)× X
}

(this makes sense: a map out of R[t] is the same as saying where R goes and where
t goes). R[t]/(tf− 1) represents the functor

X 7→ {(ϕ, τ) ∈ HomRing(R,X)× X : τϕ(f) − 1 = 0
}

. (5.3)

But tϕ(f) = 1 if and only if ϕ(f) is invertible, so (5.2) and (5.3) are represented by
the same object.

Proposition 5.57
March 12, 2025 There is a bijection{

prime ideals
of R[S−1]

} ←→ { prime ideals p ⊆ R
such that p∩ S = ∅

}
,

given by q 7→ qc under the ring map λ : R → R[S−1]. The inverse operation is p 7→ pe =
R[S−1]λ(p).

Remark 5.58. Recall that pe =
{∑

i aiλ(pi) : ai ∈ R[S−1],pi ∈ p
}

. This looks like an exten-
sion of scalars. Indeed, this is the image of R[S−1]⊗R p in R[S−1] (the map is induced by the
inclusion p ↪→ R).

Proof sketch of Proposition 5.57. Here are the main claims and the steps:

1. q prime =⇒ qc prime. We have proven this before.

2. qc ∩ S = ∅. If s1 ∈ q for some s ∈ S, then q = (1) (since it contains a unit).

3. (qc)e = q. If rs ∈ q, then r
1 ∈ q, which means r ∈ qc, which implies rs ∈ (qc)e.

4. If p ⊆ R prime with p∩ S = ∅, then pe prime and (pe)c = p. Suppose a1s1 ·
a2
s2

= p
s ,

where p ∈ p. Then there exists s ′ ∈ S such that

s ′a1a2a = ps1s2s
′.

Since p∩ S = ∅, this implies a1 or a2 are in p, so a1s1 or a2s2 are in pe.

Proposition 5.59
More generally, we have a bijection{

ideals
of R[S−1]

} ←→ { ideals I ⊆ R such that
sa ∈ I, s ∈ S ′ =⇒ a ∈ I

}
.
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Corollary 5.60
More specifically, we have a bijection{

maximal ideals
of R[S−1]

} ←→ { prime ideals p ⊆ R such that p∩ S = ∅
that are maximal amongst such ideals

}
.

5.16.1. Localization at a prime

If p ⊆ R is a prime ideal, then R− p is a multiplicative set. Let

Rp := R[(R− p)−1].

Then prime ideals in Rp are in bijection with prime ideals of q ⊆ R with q ⊆ p. There is a
single ideal that has this property: p. Therefore, Rp is local with maximal ideal Rpp.

Example 5.42 – The prime ideals of Z are (p) for p prime.

• In Z[2−1], we have all the same ideals except (2) (e.g., (3) ⊆ Z[2−1] is generated
by fractions of the form 3

2k
, where k ≥ 0).

• In Z(2), the only non-trivial ideal is (2) (e.g., 9 is a unit with inverse 19 , but 4 is not
an inverse because 14 /∈ Z(2)).

• Z(0) = Q.

5.17. Localization of modules
π March 14, 2025 Definition 5.36

Let R be a ring, S ⊆ R a multiplicative set, and M an R-module. The localization of M
with respect to S is set of pairs (m, s) ∈M× S, often written ms modulo the equivalence
relation m1

s1
= m2
s2

if there exists s ∈ S such that ss2m1 = sm2s1. Denote this module as
M[S−1].

Notice thatM[S−1] is an R[S−1]-module.
Moreover, the localization of modules is an extension of scalars: M[S−1] = R[S−1]⊗RM.

Therefore, the functor M 7→ M[S−1] sending the morphism f : M → N to S−1f : M[S−1] →
N[S−1] : ms 7→ f(m)

s is right exact.

Proposition 5.61
M 7→M[S−1] is an exact functor. Equivalently, R[S−1] is a flat R-module.

Proof. It suffices to show the functor preserves injections. Let f : M ′ ↪→ N. Let m
′
s ∈

M ′[S−1] and suppose f(m
′)

s = 0. Then there exists s ′ ∈ S such that f(m ′)s ′ = f(m ′s ′) =

0. Therefore, s ′m ′ = 0, so m
′
s = 0.

Remark 5.62. What are R[S−1]-modules? Using a characterization from before, it is the same
an abelian group M together with a ring homomorphism R[S−1] → EndZ(M). By the uni-
versal mapping property, this is the same as ring homomorphisms R → EndZ(M) such that
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the image of S is contained within the units of EndZ(M). This exactly means that M is an
R-module with any action of s ∈ S being bijective.

To be extra careful, we notice that EndZ(M) need not be commutative. To fix this, we need
to show that if a,b ∈ EndZ(M) commute and a is invertible, then a−1 and b commute.

5.18. Determinants and the Cayley-Hamilton theorem
March 17, 2025 If we use the standard definition of the determinant in linear algebra (e.g.,

∑
σ∈Sn sgn(σ)a1σ(1) · · ·anσ(n)),

we can extend it to A ∈ Matn×n(R) to get det(A) ∈ R.

Proposition 5.63
The following are equivalent:

1. A is invertible.

2. det(A) ∈ R×.

3. The columns of A form a basis for Rn.

4. The rows of A form a basis for Rn.

Proof. ((1) ⇐⇒ (3)) follows from properties of the basis.
((1) =⇒ (2)) Determinants are multiplicative, so det(A)det(A−1) = det(I) = 1.
((2) =⇒ (1)) A−1 can be written explicitly using the formula for the inverse of a

determinant from linear algebra.
((1) ⇐⇒ (4)) det(A) = det(A>).

Remark 5.64. The gist for some of the above proofs was to reduce to the case over fields,
where we already know how linear algebra works. If R is a domain, then we may embed it
into its field of fractions, but what about more generally?

Example 5.43 – The formula det(AB) = det(A)det(B) is checking that some polynomial
equation holds. The claim is that it suffices to check in the “universal ring”
S = Z[a11, . . . ,ann,b11, . . . ,bnn]. Then we map into any ring R. To reduce to a field, we
use the field of fractions of S: Q(a11, . . . ,ann,b11, . . . ,bnn), where we know it holds.

In summary, det(AB) = det(A)det(B) holds in Frac(S), so it holds in S. Then under
the natural map S→ R, the formula also holds.

Similarly, for any polynomial identity in some number of variables, we can follow the same
process. There’s another trick if we want to include inverses.

Example 5.44 – Consider the formula A−1 = det(A)−1adj(A) if det(A) ∈ R×. We need
to check that

det(A)−1adj(A)A = Adet(A)−1adj(A) = I,

which gives a polynomial system in R. Our “universal ring” now needs the inverse of
det(A) for it to make sense. We can do this precisely with localization:

S := Z[a11, . . . ,ann][det(A)−1],

which is a domain that we can embed into its field of fractions and repeat the same
reasoning as the last problem.
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Recall that we defined the determinant of ϕ : M → M, where M are free modules of rank
n, as the scalar that represents multiplication for the map

∧nϕ :
∧nM→ ∧nM.

Remark 5.65. IfM andM ′ are free modules of the same finite rank, then it’s a little misleading
to talk about the determinant of a map ϕ : M →M ′, since it isn’t invariant under changes of
bases: det(A) 6= det(CA(C ′)−1) generally. However, one can still consider det(ϕ) under the
identification

∧nM ∼= R,
∧nM ′ ∼= R.

Warning: Eigenvalues/vectors don’t work as nicely. The characteristic polynomial χA(t) :=
det(t · I−A) ∈ R[t] exists, but

1. The polynomial may not have roots.

2. A root λ of χ(t) means det(λI−A) = 0, but we have that λI−A is invertible if and only
if det(λI−A) is a unit, so we don’t have enough information.

3. Even if Av = λv for some v, we may not even by able to use it in some basis of Rn.

However, not all is lost.

Theorem 5.66 (Cayley-Hamilton for rings)
Let A ∈ Matn×n(R). Then χA(A) = 0.

There are two ways to prove this: repeat the proof from fields and be slightly careful, or use
the “universal ring” trick from the above remark. We won’t cover either.

5.19. PID structure theorem
March 19, 2025 We’ll cover the PID structure theorem, which tells us what finitely generated modules over

a PID R look like. A corollary is the classification of finitely generated abelian groups (with
R = Z).

Recall the following definition from UFD theory:

Definition 5.37
Let R be an integral domain.

1. Let r ∈ R− {0} be a non-unit. Then r is irreducible if, whenever r = ab for a,b ∈ R,
at least one of a, b is a unit. Otherwise, r is reducible.

2. p ∈ R− {0} is prime if (p) is a prime ideal. In other words, a nonzero element p is
prime if it is not a unit, and whenever p | ab for any a,b ∈ R, then either p | a or
p | b.

3. Two elements a,b ∈ R are said to be associate if there exists a unit u ∈ R such that
a = ub.

Proposition 5.67
In a PID, a nonzero element is prime ⇐⇒ it is irreducible.
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Theorem 5.68 (PID structure theorem)
Let R be a PID,M a finitely generated R-module. Then we can decompose

M ∼= R⊕ · · · ⊕ R⊕ R/(a1)⊕ · · · ⊕ R/(an)

for a1, . . . ,an ∈ R. There are two well-known decompositions that have uniqueness
properties.

1. (Elementary divisors):

M ∼= Rn ⊕
k⊕
i=1

R/(pmii ),

where pi is irreducible and mi ≥ 1. The rank n is unique and pmii are unique up
to permutation and multiplication by an associate.

2. (Invariant factors):

M ∼= Rn ⊕
m⊕
i=1

R/(ai),

where a1 | a2 | · · · | am.

5.19.1. Application: structure of polynomial rings via rational normal form

Let F be a field and let R = F[x]. Then R is a PID. There is a correspondence

{R-modules}←→ { vector spaces V/F together with
an endomorphism A : V → V

}
. (5.4)

We may wonder what the finitely generated modules are. If dimF V < ∞, then V is finitely
generated as a F-module, so it is finitely generated as an R-module.

Remark 5.69. V is finitely generated as an R-module ⇐⇒ there exist v1, . . . , vm ∈ V such
that V = span

{
Aivk : i ≥ 0, 1 ≤ k ≤ m

}
.

Note that R is infinite-dimensional over F, but R/(p) is finite-dimensional over F for any
nonzero p ∈ R.

If we use the PID structure theorem (5.68) for finite dimensional V/F, then the rank is zero.
Let p(t) = a0 + · · · + tm ∈ R[t] (we may assume p is monic). Then F[t]/(p) is a finitely-

generated F[t]-module. In the correspondence (5.4), the vector space is F[t]/(p) and A repre-
sents multiplication by t. We’ll now explicitly write what multiplication by t looks like with
the basis

{
1, t, . . . , tm−1

}
: 

−a0
1 −a1
1 −a2

. . .
...

1 −am−1

 (5.5)

Theorem 5.70 (Rational normal form)
Let V be a finite-dimensional over F and A : V → V is an endomorphism. Then there
exists a decomposition V =

⊕m
i=1 Vi, such that on some basis of each Vi, A|Vi takes the

form (5.5) (so A is a block matrix with blocks of this form), and the associated polynomi-
als p1, . . . ,pm satisfy p1 | · · · | pm.
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Notice that the characteristic polynomial of each block is the associated polynomial.

5.19.2. Structure of polynomials rings via Jordan normal form

March 21, 2025 Suppose the elementary divisors of an operator A : V → V over a finite dimensional vector
space V/F are of the form (x− λ)m. Equivalently, assume that the characteristic polynomial
of A splits completely over F. In particular, this always holds if F is algebraically closed.

For F[x]/(x− λ)m, a good basis to choose is
{
1, (x− λ), . . . , (x− λ)m−1

}
. Then multiplica-

tion by x corresponds to the matrix
λ
1 λ

1 λ
. . .

. . .

1 λ

 .

Traditionally, we reverse the order of the basis so that the above matrix is upper triangular.

Theorem 5.71 (Jordan normal form)
Let V be a vector space over F and A : V → V an endomorphism whose characteristic
polynomial splits completely over F. Then there exists a basis of V for which A is a block
diagonal matrix with blocks as above (each block may have different values for λ).

The so-called “Jordan basis” generalizes an eigenbasis; each block has an eigenvector with
eigenvalue λ and each other basis vector is an eigenvector modulo the previous eigenvector.
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6. Field theory and Galois theory

March 31, 2025 Let F be a field. Fields are examples of rings. We’ll investiage some properties by looking a
ring homomorphisms to F. The only ideals of a field F are F and (0). If

ϕ : F→ E

is a nonzero ring homomorphism, then ker(ϕ) = (0), so it is injective. We say that F is a
subfield of E and E is an extension of F.

6.1. Characteristic
Since Z is initial in Ring, there exists a unique morphism ϕ : Z → F (what is it?). Moreover,
ker(ϕ) is prime (ϕ(Z) is contained in a field, so it is an integral domain, now use the fact that
Z/ ker(ϕ) ∼= ϕ(Z)‘’). We have two cases:

• Case 1: ker(ϕ) = (p). Then F is an extension of Fp. We say that Fp is the prime field of
F and that F has characteristic p.

• Case 2: ker(ϕ) = (0). Then the following diagram commutes by the universal mapping
property of localization

Z Z[(Z − {0})−1] = Q

F

∃!

Since Q → F is nonzero, Q embeds into F. We say Q is the prime field of F and that F
has characteristic 0.

Fact 6.1. If F and E have different characteristics, then there are no nonzero homomorphisms
from F to E.

6.2. Extensions generated by a set
Let F ⊆ E be a subfield and S ⊆ E a subset. Then the ring extension (F-algebra) of F generated
by S, denoted F[S], is the smallest subring of E containing F and S. The field extension of F
generated by S, denoted F(S), is the smallest subfield of E containing F and S.

Proposition 6.2
If F ⊆ R is a field contained in a ring, and R is a domain and finite-dimensional over F,
then R is a field.

Proof. Let α ∈ R be nonzero. Consider the linear map µ defined by multiplication by α.
Then α is not a zero-divisor ⇐⇒ µ is injective ⇐⇒ µ is surjective. Thus, µ(x) = 1 for
some x.

Corollary 6.3
If F[S] is finite-dimensional over F, then F[S] = F(S).
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Example 6.1 (Multiplying by conjugates) – Concretely, in high school algebra you learned
that 1√

2
= 1
2

√
2 ∈ Q[

√
2].

6.2.1. Simple extensions

A simple extension if an extension of the form F(α) ⊇ F. We say that α is primitive. Given
α ∈ E ⊇ F, consider the map

ϕ : F[x]→ E : p(x) 7→ p(α).

Then ker(ϕ) is a prime ideal. There are two cases:

• Case 1: ker(ϕ) = (m) for an irreducible polynomialm(x) ∈ F[x]. Then

ϕ(F[x]) = F[α] = F[x]/(m)

is finite-dimensional over F, so F[α] = F(α). We say α is algebraic (over F), i.e. ϕ is not
injective, i.e. α is a root of some polynomial over F. In this case, we say thatm(x) is the
minimal polynomial of α.

• Case 2: ker(ϕ) = (0). Then F[x] is isomorphic to F[α], so F[α] is only a ring. To get a
field, we need to consider its field of fractions, which corresponds to the field of rational
functions of one variable, F(x). In this case, we say that α is transcendental (over F).

Remark 6.4. We will use the shorthand notation “α/F is algebraic,” for some α in a field ex-
tension of F, and “E/F is finite,” for some field extension E of F (and other such combinations)
often. These should not be read as quotients, rather they should be read as the word “over.”

Example 6.2 –April 2, 2025 C = R(i) ∼= R[x]/(x2+ 1) is a simple extension. In fact, C = R(z) for any
z = a+ bi, b 6= 0, e.g., C = R(3+ 2i) ∼= R[x]/((x− 3)2 + 4).

Remark 6.5. Given an irreducible m ∈ F[x], E := F[x]/(m) is a field. Then E = F[α], where α
is the image of x in E. We have that the minimal polynomial of α over F ism.

6.3. Degrees of extensions
Definition 6.1
If F ↪→ E, then E is naturally a F-vector space. We say E/F is finite if dimF(E) <∞. If so,
let the degree of extension be denoted [E : F] := dimF(E).

Example 6.3 (Degree of simple extension) – F(α)/F is finite ⇐⇒ α is algebraic. Note
that

[F(α) : F] = deg(mα,F(x)).

We call the above quantity the degree of α over F, denoted degF(α). The basis for F(α)/F

is
{
1,α,α2, . . . ,αdegF(α)−1

}
.
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For other extensions, e.g.,
F(α,β)

F(α)

F

we have the issue that, e.g., F[x,y] is not a PID, unlike F[x], so it is more challenging to describe
F(α,β). Instead, we can consider F(α,β) = (F(α))(β). We have a nice fact about such towers
of simple extensions.

Proposition 6.6
Let K ⊇ E ⊇ F be fields.

1. K/F is finite ⇐⇒ F/E and E/F are finite.

2. [K : F] = [K : E] · [E : F].

Proof. K ∼= E[K:E] as an E-vector space, and E ∼= F[E:F] as an F-vector space, so K ∼=

F[K:E]·[E:F] as an F-vector space.

Written explicitly, if K/E has basis {α1, . . . ,αn} and E/F has basis {β1, . . . ,βm}, then K/F
has basis

{
αiβj : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
.

Corollary 6.7
1. If K ⊇ E ⊇ F are fields, then [E : F] | [K : F].

2. If E = F(α), then degF(α) | [K : F] for any α ∈ K, where K/F is a finite extension. In
particular, α is algebraic.

Example 6.4 – x3 − 2 ∈ Q[x] is irreducible by Eisenstein’s criterion (p = 2). Therefore,
x3 − 2 = m 3√

2,Q(x). By Example 6.3,

[Q(
3
√
2) : Q] = 3,

with basis
{
1, 3
√
2, 3
√
4
}

. Let β ∈ Q( 3
√
2). Then degF(β) | 3. If degF(β) = 1, then β ∈ Q.

If degF(β) = 3, then Q(β) = Q( 3
√
2), i.e., β is primitive (it generates the extension).

Corollary 6.8
Let α1, . . . ,αk ∈ E ⊇ F. F(α1, . . . ,αk)/F is finite if α1, . . . ,αk are algebraic over F.
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Proof. Construct a tower

F(α1, . . . ,αk) = (F(α1, . . . ,αk−1))(αk)

...

F(α1,α2) = (F(α1))(α2)

F(α1)

F

each extension is finite, since it is a simple extension with an algebraic generator.

Remark 6.9. This gives us a way to explicitly get information about [F(α1, . . . ,αk) : F]. For
example, if k = 2, then

[F(α1,α2) : F] = [F(α1,α2) : F(α1)][F(α1) : F] = degF(α1)(α2) · degF(α1).

The first term may be challenging to compute, but we have that

degF(α1)(α2) ≤ degF(α2),

since the minimal polynomial in F(α1) ofα2 certainly has ≤ degree to the minimal polynomial
in F of α2. So

[F(α1,α2) : F] ≤ degF(α2) · degF(α1).

It’s clear how to extend this to show

[F(α1, . . . ,αk) : F] ≤
k∏
i=1

degF(αi).

Definition 6.2
E/F is an algebraic extension if every α ∈ E is algebraic over F. E/F is a transcendental
extension if there exists a transcendental element α ∈ E over F.

Proposition 6.10
1. Finite extensions are algebraic.

2. F(α1, . . . ,αk)/F finite implies α1, . . . ,αk are algebraic.

Fact 6.11. E/F is finite ⇐⇒ E/F is algebraic and finitely generated.1

3. Let S ⊆ E be a subset where all α ∈ S are algebraic over F. Then F(S)/F is algebraic.

4. If K/E is algebraic and E/F is algebraic, then K/F is algebraic.

1Recall finitely generated means F(s1, . . . , s`) = E, which may create a much larger field than the vector space
generated by s1, . . . , s` over F
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Proof of (4). We have another explicit construction. Let α ∈ K. Then it satisfies a
polynomial equation in E

αn + an−1α
n−1 + · · ·+ a0 = 0.

The extension F(a0, . . . ,an−1)/F is finite, and F(α,a0, . . . ,an−1)/F(a0, . . . ,an−1) is fi-
nite (we wrote a finite polynomial with α as a root above), so F(α,a0, . . . ,an−1)/F is
finite and α is algebraic.

April 4, 2025

Example 6.5 (Q( 3
√
2, i)) – The numberα = 3

√
2+ i ∈ Q( 3

√
2, i), so it is algebraic. Suppose

we want to know degQ(α). The tower

Q( 3
√
2, i)

Q( 3
√
2) Q(i)

Q
3 2

implies that [Q( 3
√
2, i) : Q] = 6 (alternatively, i /∈ Q( 3

√
2), so [Q( 3

√
2, i) : Q( 3

√
2)] = 2).

This gives us an explicit basis for Q( 3
√
2, i)/Q:{

1, 3
√
2, 3
√
4, i, i 3

√
2, i 3

√
4
}

.

Now checking the degree of α is the same as writing powers of α:
{
1,α, . . . ,α5

}
in terms

of the basis above and “waiting for linear dependence.” A direct computation verifies
that its degree is 6.

6.4. Algebraic closure
Given E ⊇ F, let K := {α ∈ E : α is algebraic/F}. Then K is a field called the algebraic closure
of F in E, denoted FE. K is a the largest subfield of E that is algebraic over F.

This construction is a “relative algebraic closure” (to E). Our goal now is to construct an
“absolute algebraic closure.”

Proposition 6.12
Let F be a field. The following are equivalent:

1. Every non-constant polynomial p(x) ∈ F[x] − F has a root in F.

1’. p(x) ∈ F[x] − F splits completely in F. That is, p(x) = c(x−α1) · · · (x−αn).

2. p(x) is irreducible ⇐⇒ p(x) is linear.

3. If E/F is finite, E = F.

3’. If E/F is algebraic, E = F.

3”. If E ⊇ F, α ∈ E algebraic /F, then α ∈ F.
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Proof (sketch). ((1) ⇐⇒ (1’)) ( ⇐= ) is clear. ( =⇒ ) is by polynomial long division.
(1’) and (2) are clearly equivalent.

((3) =⇒ (3’)) is immediate. 1

((3) =⇒ (3”)) F(α)/F is finite, therefore F(α) = F, so α ∈ F.
((3”) =⇒ (3’))
((3) =⇒ (2)) If p(x) is irreducible, then [F[x]/(p) : F] <∞

1Student question: Shouldn’t it be the other way, since finite =⇒ algebraic? Answer: We’re showing that,
given A =⇒ B, (B =⇒ C) =⇒ (A =⇒ C). So it’s something like a contravariant functor...

Definition 6.3
F is called algebraically closed if any of the properties in Proposition 6.12 hold.
E ⊇ F is an algebraic closure of F if E/F is algebraic and E is algebraically closed (we

think of E as a maximal algebraic extension of F).

Proposition 6.13
E if an algebraic closure of F ⇐⇒ E/F is algebraic and all p(x) ∈ F[x] − F split in E.1

1This is an “easier” thing to prove. The definition above asks us to show all polynomials in E[x] − E split
completely.

Proof. ( =⇒ ) Obvious (see footnote). ( ⇐= ) Let α ∈ K ⊇ E ⊇ F be algebraic over E.
Since E/F is algebraic, α is algebraic over F, somα,F splits completely in E, so α ∈ E.

Remark 6.14.

• This proposition actually holds if we replace “all p(x) ∈ F[x] − F split” with “all p(x) ∈
F[x] − F have a root,” but proving this fact is harder.

• We will later prove that (1) any field has an algebraic closure and (2) any two algebraic
closures of F are isomorphic. Therefore, we will write F as the algebraic closure of F.

• In particular, F = Fmeans F is algebraically closed.

Example 6.6 – By the fundamental theorem of algebra, C = C. Embarassingly, the proof
of the fundamental theorem of algebra doesn’t purely use algebra, and need to divert to
analysis. But we should expect that because R is constructed with analytical techniques.
Since C/R is finite, R = C as well.

Example 6.7 – C 6= Q, but since C ⊇ Q, we can actually just take the relative algebraic
closure to get

Q = QC = {α ∈ C : α algebraic /Q} .

6.5. Morphisms of extension
April 7, 2025 Let F(α)/F be a simple extension. Suppose E/F is some other extension. To describe a mor-

phism of extensions ϕ : F(α) → E, we want F to be fixed. In other words, with the natural
structure maps F → F(α), F → E, a morphism of extensions is an F-algebra homomorphism
F(α)→ E.
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• Case 1: α is algebraic. Let F(α) = F[x]/(m), where m(x) = mα,F(x). Then ϕ is deter-
mined by the image of α. Call it β. Then βmust satisfym(β) = 0 (i.e.,mβ,F(x) = m(x)).
Categorical interpretation: HomF(F(α),E) = {β ∈ E : m(β) = 0}.

• Case 2: α is transcendental. It’s easy to show thatϕ(α) must also be transcendental (one
way: ϕ is injective).
Categorical interpretation: HomF(F(α),E) = {β ∈ E : β is transcendental/F}.

Example 6.8 – Consider a morphism of extensions/Q from Q( 3
√
2) → C. Then 3

√
2 can

map to β1,β2,β3, where βk = e2πki/3 3
√
2 are the roots of x3 − 2 in C.

More generally, suppose F(α)/F is algebraic and E is some field. For any ϕ0 : F → E, there
exists a bijection {

ϕ : F(α)→ E : ϕ
∣∣
F
= ϕ0

} ←→ {β ∈ E : m̃(β) = 0} ,

where m̃ ∈ E[x] is the image ofmα,F ∈ F[x] under ϕ0.

6.6. Splitting fields
Motivation. We want to add all the roots of a certain polynomial to a field.

Definition 6.4
E/F is a splitting field of p(x)∈ F[x] if

1. p(x) splits completely in E.

2. E/F is generated by p’s roots. That is, E = F(α1, . . . ,αm), where p(x) = (x −
α1) · · · (x−αm) ∈ E[x].We assume p is

monic here.

Proposition 6.15 (Existence)
For any p(x) ∈ F[x], a splitting field E/F of p exists. Moreover, [E : F] ≤ m!, where
deg(p) = m.

Proof. Choose an irreducible m1(x) | p(x) and let E1 := F[x]/(m1). Then E1 = F(α1)
and p(α1) = 0. Repeat the previous construction with p2(x), where p(x) = (x−α1)p2(x)
to create E2 = E1(α2) = E1[x]/(m2), where p2(α2) = 0,m2(x) | p2(x) is irreducible over
E1.

By construction, [Ej+1 : Ej] ≤ m− j (where E0 = F) for 0 ≤ j ≤ m− 1.

Proposition 6.16
Let E, Ẽ be two splitting fields/F of p(x) ∈ F[x]. Then there are isomorphic/F.

Proof. Recall that E = F(α1, . . . ,αm), so it belongs to a tower adjoining roots.

• On F(α1), find roots of mα1,F(x) | p(x) in E. p(x) splits in Ẽ, and so does mα1,F.
Find β1 ∈ Ẽ such that mα1,F(β1) = 0. This gives an isomorphism ϕ1 : F(α1) →
F(β1).
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• Letmα2,F(α1) ∈ F(α1)[x] and apply ϕ1:

ϕ1(mα2,F(α1))m̃2 ∈ F(β1)[x].

Then m̃2(x) | p(x), which splits in E. Therefore, we get an isomorphism

ϕ2 : F(α1,α2)
∼
−→ F(β1,β2).

• Repeat this process.

We also proved that if E/F is generated by roots of p(x) which splits in Ẽ/F, there exists a
morphism of extensions of F

ϕ : E→ Ẽ.

Definition 6.5
Let S ⊆ F[x] − F be a family of polynomials.April 9, 2025 E/F is a splitting field of S if

1. Every p ∈ S splits completely/E.

2. E/F is generated by the roots of all p ∈ S.

Example 6.9 –

1. If S = {p}, then E is the splitting field of p.

2. If S = {p1, . . . ,pn}, then E is the splitting field of p1, . . . ,pn.

3. (The most important) If S = F[x] − F, then E = F.

Theorem 6.17
For any F,S, a splitting field E/F of S exists. If E/F and Ẽ/F are splitting fields of S, then
they are isomorphic extensions.

Corollary 6.18
F exists and is unique up to isomorphic extensions.

Proof of Theorem 6.17. Uniqueness. Consider the following poset:{
(K,ϕ) : F ⊆ K ⊆ E is a field,ϕ : K→ Ẽ a homomorphism/F

}
,

where the partial order � is given by

(K1,ϕ1) � (K2,ϕ2) ⇐⇒ K2 ⊇ K1,ϕ2
∣∣
K1

= ϕ1.

Let (Kα,ϕα)α be a chain. Define K =
⋃
α Kα (this is a subfield of E) and ϕ : K → Ẽ,

where ϕ(x) = ϕα(x) if x ∈ Kα. Therefore, by Zorn’s lemma, there exists a maximal
(K,ϕ). We claim this is E. To prove this, we show by contradiction that (K,ϕ) can be
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extended, making it not maximal. Let K ⊂ E, so there exists p ∈ S and α ∈ E− K with
p(α) = 0. We have thatmα,K(x) | p(x) in K[x]. There is a natural map ϕ : K[x]→ ϕ(K)[x],
so ϕ(mα,K) ∈ ϕ(K)[x] is a polynomial that divides p(x), which splits in Ẽ, so there exists
β ∈ Ẽ with ϕ(mα,K)(β) = 0. This defines a morphism ϕ̂ : K(α)→ ϕ(K)(β) that extends
ϕ. Therefore, (K,ϕ) ≺ (K(α), ϕ̂), which is a contradiction.

Since E and Ẽ are generated by all roots of p ∈ S, ϕ defined on E induces an isomor-
phism.

Existence. SetΩ ⊇ F and consider extensions K ⊆ Ω. Consider the poset

{(K,+, ·) : K is an extension of F generated by some roots of p(x) ∈ F[x]} ,

where the partial order � is given by

(K1,+1, ·1) � (K2,+2, ·2) ⇐⇒ K1 is a subfield of K2.

Similar to the uniqueness proof, Zorn’s lemma implies there exists a maximal element
(K,+, ·). We claim (K,+, ·) is a splitting field. Suppose not. Then some p(x) ∈ F[x]
does not split completely in K. Then there exists an irreducible, degree ≥ 2 polynomial
p̂(x) ∈ K[x] that divides p(x). But then

(K[x]/(p̂),+, ·) � (K,+, ·),

contradiction. We still need to show that K[x]/(p̂) ↪→ Ω. It suffices to choose Ω with
cardinality

|Ω| > |F[x]× Z|.

LetΩ = K.

Example 6.10 – We know that C ⊃ Q because there are countably many algebraic
numbers. Choose some α1 ∈ C − Q. Further there exists α2 ∈ C − Q(α1). This process
can be continued infinitely by the axiom of choice to give a subfield

Q(α1,α2, . . . ,αn, . . . ) ⊆ C.

But it can be shown this field is isomorphic to Q(α2, . . . ,αn, . . . ). This induces an iso-
morphism from C to a subfield of itself. This is completely non-constructive because we
applied the axiom of choice.

6.7. Separability
April 11, 2025 Let E/F be a finite extension, i.e., E = (α1, . . . ,αk) where αi is algebraic/F. Suppose K/F is

any extension. Consider the set HomF(E,K) of morphisms of F-extensions.

Example 6.11 (HomQ(Q(
√
2,
√
3), C)) – Suppose we want a morphism of Q-extensions

from Q(
√
2,
√
3) to C. We first describe where the map ϕ sends

√
2. There are two

options, corresponding to the two roots ofm√
2,Q(x):

√
2 7→ √

2,
√
2 7→ −

√
2.
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Notice that we have constructed morphisms

Q(
√
2)→ Q(

√
2) ⊆ C, Q(

√
2)→ Q(−

√
2) = Q(

√
2) ⊆ C.

Now we decide where to send
√
3 given either of the maps Q(

√
2) → C. We have

m√
3,Q(

√
2)

= x2−3 [Exercise], soϕ(
√
3)2−3 = 0, henceϕ(

√
3) is a root ofm√

3,Q(
√
2)
(x).

Again, there are two options:
√
3 7→ √

3,
√
3 7→ −

√
3.

This gives us a map Q(
√
2,
√
3) → C. In the process, notice that at most 4 maps are

formed.
The maps were constructed iteratively through a tower of simple extensions (orange

first, then red).

Q(
√
2,
√
3) Q(

√
2,
√
3)

Q(
√
2) Q(

√
2)

Q Q

ϕ

id

Remark 6.19. Two things in this construction don’t happen in general:

• Q(
√
2) = Q(−

√
2). That is, adjoining a root single root may result in a different field,

depending on the root. Consider Hom(Q( 3
√
2), C).

• The irreducible polynomial of
√
3/Q is irreducible over Q(

√
2). Consider Hom(Q(

√
2, 4
√
8), C)

(notice that ( 4
√
8)2 = 2

√
2, so Q( 4

√
8) ⊇ Q(

√
2)).

A similar process as described in the example works for HomF(E,K). The number of choices
at step iwill be at mostmαi,F(α1,...,αi−1). Therefore, we have

Proposition 6.20

# HomF(E,K) ≤
k∏
i=1

deg(mαi,F(α1,...,αi−1))

=

k∏
i=1

degF(α1,...,αi−1)
(αi)

=

k∏
i=1

[F(α1, . . . ,αi−1,αi) : F(α1, . . . ,αi−1)]

= [E : F].

This inequality is strict if at least one of the polynomials mαi,F(α1,...,αi−1) has fewer roots
than its degree. This happens in two cases:

• Case 1: mαi,F(α1,...,αi−1) does not split completely in K. In this case, K was too small!
To resolve this, let K contain the splitting field of mαi,F for all i (this works because
mαi,F(α1,...,αi−1)(x) | mαiF(x)). E.g. let K = F.

• Case 2:mαi,F(α1,...,αi−1) has multiple roots. This issue is harder to resolve...
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Definition 6.6
Let p(x) ∈ F[x] be a nonzero polynomial. We say p is separable if all of its roots are
simple (have multiplicity 1) in some extension where p splits completely.

Lemma 6.21
αi is a multiple root of p ⇐⇒ p(α) = p ′(α) = 0.

Remark 6.22. We are using a formal derivative d
dx : F[x] → F[x], where is defined purely

algebraically. It’s a F-linear map that satisfies the Leibniz rule: (p(x)q(x)) ′ = p ′(x)q(x) +
p(x)q ′(x). In fact, any F-linear map F[x]→ F[x] satisfying the Leibniz rule is called a derivation.

Corollary 6.23
p(x) is separable ⇐⇒ gcd(p(x),p ′(x)) = 1.

Remark 6.24. To prove this, first note that if f,g ∈ F[x] and E/F is an extension, then gcd(f,g)
is equal over both polynomial rings. Therefore, if f,g are coprime over F, they are coprime
over E. Since F[x] is a PID, there exist polynomials α,βwith αf+βg = 1.

6.7.1. Perfect fields

Notice that an irreducible polynomial f(x) is separable ⇐⇒ f(x) - f ′(x) ⇐⇒ f ′(x) = 0.
This does not imply that f(x) is a constant. For example, if F has characteristic p, then (xp) ′ =
pxp−1 = 0. This actually characterizes the polynomials with derivative zero: f ′(x) = 0 ⇐⇒
f(x) ∈ F[xp].

Therefore, if char(F) = 0, then all irreducible polynomials are separable.

Definition 6.7
A field F is perfect if either

1. char(F) = 0,

2. char(F) = p and Fp = {xp : x ∈ F} = F.

Remark 6.25. (2) is an important condition because in characteristic p, (x+ y)p = xp + yp.
Therefore, we can reduce any polynomial in F[xp] as follows:

akx
kp + · · ·+ a1xp + a0 = (a1/p

k xk + · · ·+ a1/p
1 x+ a1/p

0 )p,

provided that a1/p
i exists. This is precisely the condition for a perfect field. Therefore, we

avoid the issues above in characteristic p given that the field is perfect.

Proposition 6.26
April 14, 2025 If F is a perfect field, then every irreducible polynomial is separable.
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Definition 6.8
Let α be algebraic/F. We say that α is separable ifmα,F(x) is separable.

Corollary 6.27
If F is perfect, then α algebraic =⇒ α separable.

Remark 6.28. Conversely, if F is not perfect, there exists a ∈ F− Fp. A problem on the home-
work is to show that xp − a is irreducible.

Non-Example 6.1 (Imperfect fields) – Let’s try to find an imperfect field.

1. char(F) = 0 implies perfect, so we need to assume positive characteristic.

2. Fp = Z/p is perfect by Fermat’s little theorem.

3. On the homework we showed that a finite (and algebraic) extension of a perfect
field is perfect, so Fpn is perfect as well.

4. Therefore, we must add a transcendental element. Consider Fp(t). The element
t is not the pth power of some rational function. By the previous remark, the
polynomial xp − t ∈ (Fp(t))[x] is irreducible, but has formal derivative 0, so it is
inseparable.

6.7.2. Separable extensions

Theorem 6.29
Let E = F(α1, . . . ,αk)/F be a finite extension. Let K/F be an extension such that mαi,F
split/K. The following a equivalent:

1. #(HomF(E,K)) = [E : F].

2. mα1,F,mα2,F(α1), . . . ,mαk,F(α1,...,αk−1) are separable.

3. All α ∈ E are separable/F.

Proof. ((1) ⇐⇒ (2)) is given by counting maps from looking at the tower

F(α1, . . . ,αk)

...

F(α1)

F

(we did this computation already).
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((1) =⇒ (3)) Consider E(α,α1, . . . ,αk). We construct a map E → K by first consider-
ing a map F(α)→ K, then extending it further to a map E→ K.

((3) =⇒ (2)) If mαi,F is separable, then mαi,F(α1,...,αi−1) | mαi,F is also separable (all
roots are simple).

Definition 6.9
An extension E/F is separable if it satisfies any of the above conditions (6.29).

Remark 6.30. Let F have characteristic p. Let E/F be algebraic (or finite). The separable
closure, Esep := {α ∈ E : α separable/F} is a subfield of E, which is the maximal separable
subextension of F.

A homework problem is that mα,F(x) can be expressed in the form g(xp
k
) for some k ≥ 0,

and g is irreducible and separable/F. In other words, E/Esep has the following property: for
all α ∈ E, there exists k ≥ 0 such that αp

k ∈ Esep. Another way to say this is that E/Esep is
purely inseparable.

Notice that this remark is only interesting for imperfect fields.

6.7.3. Normal extensions and the start of Galois theory

Theorem 6.31
Let E = F(α1, . . . ,αk)/F be a finite extension. Let K/F be an extension such that mαi,F
split/K. Embed E ↪→ K. The following are equivalent:

1. mαi,F split in E.

2. For any ϕ : E→ K (such that ϕ|F = idF), ϕ(E) ⊆ E.

3. For any α ∈ E,mα,F splits/E.

This is another homework problem, with some simplifying assumptions (e.g., K = F).

Remark 6.32. The above statements are equivalent to E/F being the splitting field of some
polynomial q(x) ∈ F[x].

Definition 6.10
We say an extension E/F is normal if it satisfies any of the above conditions (6.31), (6.32).

Definition 6.11
A finite (or algebraic) extension E/F is Galois if it is normal and separable.

Remark 6.33. If F is perfect, a finite (or algebraic) extension E/F is Galois ⇐⇒ it is normal.
The most important case for the rest of the course is F = Q.
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Theorem 6.34
For a finite extension E/F, the following are equivalent:

1. E/F is Galois.

2. # HomF(E,E) = # AutF(E) = [E : F].

3. E/F is a splitting field of a separable polynomial q(x) ∈ F[x].

Galois theory is the study of Galois extensions, which is what we will study for the rest of
the course. The idea with the definition of a Galois extension is that

• Separability gives us that #(HomF(E,K)) is as big as possible.

• Normality gives us that ϕ ∈ HomF(E,K) is actually an automorphism, so we can form
a group of automorphisms of E/F.

6.8. Galois correspondence
The group of automorphisms of a Galois extension is so important that it gets its own name.

Definition 6.12
April 16, 2025 The Galois group of E/F is defined as Gal(E/F) := AutF(E) when E/F is Galois.

Here’s the big theorem:

Theorem 6.35 (Fundamental theorem of Galois theory)
Let E/F be a finite Galois extension. There is a bijection between the intermediate fields
K and the subgroups of the Galois group Gal(E/F), where we send intermediate fields K
to the Galois group of E over K, and send subgroups to the fixed field by that subgroup:{

intermediate fields K
E ⊇ K ⊇ F

} ←→ {
subgroups

H ≤ Gal(E/F)

}
K 7→ Gal(E/K) = {σ ∈ Gal(E/F) : σ|K = idK}

EH := {α ∈ E : H · α = α} ←[ H

The correspondence is inclusion-reversing (that is, larger intermediate fields correspond
to smaller subgroups).

Example 6.12 (Q(
√
2, i)/Q) – The field E = Q(

√
2, i) is the splitting field of the polyno-
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mial (x2 − 2)(x2 + 1), so E/Q is Galois. Consider the tower

Q(
√
2, i)

Q(
√
2)

Q

Sincem√
2,Q(x) = x

2 − 2,m
i,Q(

√
2)
(x) = x2 + 1, the extension has degree 4. Therefore,

# Gal(E/Q) = [E : Q] = 4.

The automorphisms of E/Q are as follows:

Automorphism
√
2 7→ i 7→

id
√
2 i

σ1 −
√
2 i

σ2
√
2 −i

σ3 −
√
2 −i

Now consider Gal(E/Q(
√
2)). It has two elements: id,σ2, and it naturally is a sub-

group of Gal(E/Q). Similarly, Gal(E/Q(i)) = {id,σ1}. We are missing the subgroup
{id,σ3}. To figure out what intermediate field this corresponds to, write out an element
of Q(

√
2, i) as a+ b

√
2+ ci+ di

√
2, a,b, c,d ∈ Q. Then

id(a+ b
√
2+ ci+ d

√
2i) = a+ b

√
2+ ci+ di

√
2

σ3(a+ b
√
2+ ci+ d

√
2i) = a− b

√
2− ci+ di

√
2.

It follows that the fixed subfield is Q(i
√
2), so Gal(E/Q(i

√
2)) = {id,σ3}. In summary,

we’ve constructed a correspondence

Q(
√
2, i) {id}

Q(
√
2) Q(i) Q(i

√
2) {id,σ2} {id,σ1} {id,σ3}

Q {id,σ1,σ2,σ3}

Example 6.13 (Non-Galois extension) – Consider Q( 3
√
2)/Q. This is not a Galois exten-

sion, but we can consider the Galois extension E = Q(α1,α2,α3)/Q, where αj =
3
√
2ζ
j
3

are roots of x3 − 2.
Any ϕ ∈ Gal(E/Q) permutes the roots α1,α2,α3, so Gal(E/Q) ∼= S3. Since ϕ ∈

Gal(E/Q( 3
√
2)) fixes 3

√
2, the only possible maps are α1 7→ α1, α2 7→ α2, and α1 7→ α2,

α2 7→ α1. Similar calculations give us Gal(E/Q(α1)), Gal(E/Q(α2)).
But there’s one more subgroup of S3 we haven’t covered: A3. One can realize (with

some cleverness) that ζ3 = −1+
√
−3

2 . The corresponding intermediate field turns out to
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be Q(
√
−3).

Proof of Theorem 6.35. Let G = Gal(E/K). The following are easy to show:April 18, 2025

1. E/K is Galois, {σ ∈ G : σ|K = idK} = Gal(E/K), so # Gal(E/K) = [E : K] =
[E:F]
[K:F]

.

2. Order-reversing: K1 ⊆ K2 implies Gal(E/K1) ⊇ Gal(E/K2) (an automorphism
fixing K2 certainly fixes K1), and H1 ≤ H2 implies EH1 ⊇ EH2 (this is a basic fact
about fixed points a group action).

3. K ⊆ EGal(E/K) and H ⊆ Gal(E/EH) are clear.

We want to show that the inclusions in (3) are equality. We’ll use a counting argument.
For the first equality,

1. For all H ≤ G, [E : EH] = # Gal(E/EH) ≥ #H.

2. For all K ⊇ F, [E : EGal(E/K)] ≥ # Gal(E/K) = [E : K]. But since EGal(E/K) ⊇ K,
K = EGal(E/K), as desired.

The other equality is more challenging. We use (and prove!) the following theo-
rem.

Theorem 6.36 (Artin’s theorem)
Let E be any field, and let H ≤ Aut(E) be a finite subgroup. Let F = EH. Then

[E : F] ≤ #H.
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Proof. Since we are concerned with the degree, this argument is linear-algebra-
flavored. Let H = {σ1, . . . ,σm}. Let α1, . . . ,αn ∈ E be linearly independent over F.
We claim n ≤ m. Consider the system of linear equations

σ1(α1)x1 + · · ·+ σ1(αn)xn = 0,
σ2(α1)x1 + · · ·+ σ2(αn)xn = 0,
...

σm(α1)x1 + · · ·+ σm(αn)xn = 0,

where (x1, . . . , xn) ∈ En. We claim the only solution is the trivial x1 = · · · = xn = 0
(which implies m ≥ n). Suppose (x1, . . . , xn) 6= 0 is a solution. WLOG, x1 6= 0.
Since the system is homogeneous, we may divide by x1 to get x1 = 1. Notice that
id ∈ H, so let σ1 = id. Then we get

α1x1 + · · ·+αnxn = 0.

But since α1, . . . ,αn are independent/F, one of the xi’s, say, x2 is not in F, i.e.,
σi(x2) 6= x2 for some i. For σj ∈ H, we have

0 = σi(σj(α1)x1 + · · ·+ σj(αn)xn)
= (σi ◦ σj)(α1) · σi(x1) + · · ·+ (σi ◦ σj)(αn) · σi(xn).

It follows that (σi(x1), . . . ,σi(xn)) = (1, . . . ,σi(xn)) is also a solution (since (σi ◦
σj)j is just a permutation of (σj)j). But subtracting from the original solution
(x1, . . . , xn), we get (0,σi(x2) − x2, . . . ,σi(xn) − xn) is also a solution.

We prove that the only solution is trivial by a “descent” argument. Suppose
(x1, . . . , xn) ∈ En is a nonzero solution with the largest number of nonzero entries.
If n− 1 entries are nonzero, then all entries are zero because E is a field. Otherwise,
the above procedure creates a solution at least one more zero and a nonzero term,
yielding a contradiction. �

Since [E : EH] ≤ #H and H ⊆ Gal(E/EH), we have H = Gal(E/EH).

Remark 6.37. The proof of Artin’s theorem (6.36) seems somewhat magical. However, it’s
well-motivated. Let {α1, . . . ,αn} be a basis for E/F. Consider the extension of scalars E⊗F E.
The elements look like α1 ⊗ x1 + · · ·+αn ⊗ xn for xi ∈ E. Define a map

E⊗F E→ EAutF(E)

α1 ⊗ x1 + · · ·+αn ⊗ xn 7→
 n∑
j=1

xjσi(αj)


σi∈AutF(E)

.

Then Artin’s theorem says that this map is injective (n = dimE(E⊗F E) ≤ dim(Em) = m).

Example 6.14 – If E/F is a finite Galois extension with [E : F] = # Gal(E/F) = n, then the
above map is

E⊗F E→ En

α⊗ x 7→ (σ1(α) · x, . . . ,σn(α) · x).

Since the dimensions are equal, this map is bijective.
On the homework, we showed that C ⊗R C ∼= C × C. Notice that this is a special case
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of the above statement, because C/R is a degree 2 Galois extension.

Exercise 6.1. Prove that C ⊗R C ∼= C × C as R-algebras, by describing a map.

Remark 6.38. Artin’s theorem shows that if F = EH is the field fixed by H ≤ AutF(E), then
[E : F] ≤ #H. But combining the facts

H ⊆ AutF(E), # AutF(E) ≤ [E : F],

we get that
H = AutF(E) ⇐⇒ [E : F] = #H ⇐⇒ E/F is Galois.

This gives an easier way to show a field extension is Galois.

An easy consequence of the correspondence (6.35): if K1,K2 ⊆ E are two intermediate
fields, then K1 ∩K2 and K1K2 are also intermediate fields, which correspond to 〈H1,H2〉 and
H1 ∩H2, respectively.

Example 6.15 (Cyclotomic extension) – Let ζ = e
2πi
17 and consider theApril 21, 2025 extension Q(ζ)/Q.

Since ζ is the splitting field of x17−1 (which actually factors as (x−1)(x16+ · · ·+x+1)),
the extension is Galois.

Fact 6.39. Φp(x) := xp−1
x−1 ∈ Q[x] is irreducible.

Proof (sketch). Do the Eisenstein criterion on Φp(x+ 1) =
(x+1)p−1

x .

Remark 6.40. In fact, for any n ≥ 1,

Φn(x) =
xn − 1

lcm d|n
d<n

xd − 1
∈ Z[x]

is irreducible over Q.

Therefore, [Q(ζ) : Q] = 16. Every σ ∈ Gal(Q(ζ)/Q) is determined by where it sends
ζ. ζ can only be mapped to ζk for 1 ≤ k ≤ 16. Looking at how composition works, it’s
not hard to prove an isomorphism

Gal(Q(ζ)/Q) ∼= (Z/17)×.

Since 17 is prime, (Z/17)× ∼= Z/16. We know the subgroup lattice of Z/16well:

{e}

8Z/16

4Z/16

2Z/16

Z/16
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so we have a corresponding tower of fields

Q(e
2πi
n )

E3

E2

E1

Q

2

2

2

2

where each extension is quadratic (i.e., degree 2). Computing E3 is done by noting that
8Z/16 corresponds to the two element subgroup {id,σ} ≤ Gal(Q(ζ)/Q), where σ is
complex conjugation. Therefore,

E3 = R ∩ Q(e
2πi
n ) = Q

(
ζ+ ζ−1

2

)
= Q

(
cos

(
2π

17

))
(showing the second equality may take some work).

Fact 6.41. Any quadratic extension E/F is of the form F(
√
a) for some a ∈ F (assuming

that char(F) 6= 2).

As a corollary, cos
(
2π
17

)
can be written with the operations +,−, ·, /,√ on Q, since

all extensions are quadratic.

Exercise 6.2 (Challenging). Find this expression.

Remark 6.42. In general, Gal(Q(e
2πi
n )/Q) ∼= (Z/n)× by a similar argument.

If F is an arbitrary field, and we let E be the splitting field of xn − 1, then

Gal(E/F) ⊆ (Z/n)×,

provided that char(F) - n.

6.8.1. Constructible numbers

α > 0 is constructible if a segment of length α can be constructed using a ruler and compass,
starting from a unit length. Algebraically, α is constructible if there exists a formula for it in
terms of the operations +,−, ·, /,√ on Q.

As a corollary of the last example, a regular 17-gon is constructible.

Fact 6.43 (By MATH 741...). Let E/Q be a finite Galois extension. If [E : Q] = 2k, then
Gal(E/Q) is a 2-group (it’s order is a power of 2). By MATH 741 Corollary 2.13, we get a
chain of groups

Gal(E/Q) ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hk = {e} ,

where #Hi = 2k−i (i.e., we halve the subgroup size at each step).
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By Galois theory, this corresponds to a tower

E = EHk

EHk−1

...

EH1

Q

2

2

2

2

of quadratic extensions. Then every α ∈ E is “constructible” (we now allow α to be complex).

Corollary 6.44
If E/Q is not an extension of degree 2k for some k, then there does not exist a tower of
quadratic extensions

Ek ⊇ · · ·E2 ⊇ E1 ⊇ Q,

where E ⊆ Ek.

Example 6.16 – A regular n-gon is constructible ⇐⇒ (Z/nZ)× is a 2-group ⇐⇒
ϕ(n) is a power of 2.

Example 6.17 – Suppose degQ(α) = 2
k for some algebraicα. This condition is necessary,

but not sufficient for α to be constructible, since Q(α)/Q (a degree 2k extension) may not
be Galois. Let α2, . . . ,αn be the other roots ofmQ,α(x). If

[Q(α,α2, . . . ,αn) : Q]

is not a power of 2, then α is not constructible (the proof idea is as follows: suppose there
is a tower Q ⊆ E1 ⊆ · · ·Ek−1 ⊆ Ek ⊆ Q(α,α2, . . . ,αn). Then there exists an auto-
morphism of Q(α,α2, . . . ,αn) switching α and any other αi. We can show the degree of
each extension in the tower is still the same, so all αi are constructible, contradicting the
extension not being a power of 2).

6.8.2. Conjugates

Definition 6.13
April 23, 2025 Let α,β ∈ E/F be algebraic. We say that α and β are conjugate/F ifmα,F = mβ,F (⇐⇒

there exists an isomorphism of F-extensions F(α) ∼
−→ F(β)).
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Proposition 6.45
If E/F is Galois with G = Gal(E/F), then α,β ∈ E are conjugate ⇐⇒ β ∈ G · α =
{σ(α) : σ ∈ G}.

Proof. ( =⇒ ) Extend the F-map F(α) ∼
−→ F(β) to a map E → E, which is possible pre-

cisely because E/F is Galois.
(⇐= ) This is true even if E/F is not Galois.

Moreover, since α is separable/F (because E/F is Galois), mα,F(x) =
∏
σ∈G(x− σ(α)). In

other words, degF(α) = |G · α|.

Example 6.18 – Let α =
√
2+ i ∈ Q(

√
2, i)/Q. Then its conjugates are

{
±
√
2± i

}
, so

degQ(α) = 4, and the minimal polynomial is
∏

(x±
√
2± i).

6.8.3. Normal extensions and normal subgroups

If E/F is Galois and K is an intermediate field, then we know E/K is Galois:

G = Gal(E/F) ≥ H =
{
σ : σ

∣∣
K
= idK

}
= Gal(E/K).

When is K/F Galois? We know that the extension is automatically separable, so it suffices
to check then K/F is normal. This happens ⇐⇒ for all α ∈ K, all conjugates are in K, i.e.,
G · K ⊆ K. For all σ ∈ G, σ(K) is another intermediate field, so we want to check when
σ(K) = K. By Galois theory, we have a correspondence

K↔ H =
{
τ : τ

∣∣
K
= idK

}
,

σ(K)↔ H ′ =
{
τ : τ

∣∣
σ(K)

= idσ(K)
}

.

So

σ−1τσ ∈ H ⇐⇒ for all α ∈ K, τ ◦ σ(α) = σ(α)⇐⇒ for all α ∈ K, σ−1 ◦ τ ◦ σ(α) = α.

So H = σ−1H ′σ. Hence, normal extensions coincide with normal subgroups.

Proposition 6.46
Let E/F be a finite Galois extension and K an intermediate field. Let G = Gal(E/F),
H = Gal(E/K). Then

1. K is a Galois extension of F ⇐⇒ H is a normal subgroup of G.

2. If (1) holds, then Gal(K/F) ∼= G/H.

Proof. (1) was proved above.
(2) For all σ ∈ G, σ|K : K→ K, so we have a map

G→ Gal(K/F)

σ 7→ σ
∣∣
K

.

The kernel of this map is H by definition. This map is surjective either by a counting
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argument or by extending automorphisms.

Example 6.19 – Let E be the splitting field of x17 − 2 over Q. In other words,

E = Q(
17
√
2, 17

√
2ζ, . . . , 17

√
2ζ16),

where ζ = e
2πi
17 . Let α = 17

√
2. We can consider E in the tower

Q(α, ζ)

Q(ζ)

Q

We already know that Gal(Q(ζ)/Q) = (Z/17)×. We can now consider AutQ(ζ)(Q(α, ζ)).
The automorphisms are given by

α 7→ αζm

for 0 ≤ m ≤ 16, which identifies group of automorphisms with Z/17.

Exercise 6.3. Show that degQ(ζ)(α) = 17.

So Q(α, ζ)/Q(ζ) is Galois. If we let G = Gal(Q(α, ζ)/Q), then we have some facts:

G ≥ H ∼= Z/17, G/H ∼= (Z/17)×.

In fact, with some effort, we get that

G ∼= Z/17o (Z/17)×.

A more enlightening way to describe this group is as linear automorphisms of Z/17:{
f : Z/17→ Z/17 : x 7→ kx+m : k ∈ (Z/17)×,m ∈ Z/17

}
,

from which the isomorphism becomes more clear.
Question. What is the meaning of G being a semidirect product?

Exercise 6.4. Let F be a field with char(F) - n. Then a primitive nth root of unity exists.

Here’s the generalization.

94



6.9 Solvability Pramana

Proposition 6.47
Let F be any field and a ∈ F− {0}. Let E be the splitting field of f(x) = xn − a over F,
assuming char(F) - n so that f is separable. Let α be a root of f and let ζ be a primitive
nth root of unity. Then

• Gal(F(ζ)/F) ≤ (Z/n)×,

• Gal(F(α, ζ)/F(ζ)) ≤ Z/n,

and so

• Gal(F(α, ζ), F) ≤ Z/no (Z/n)×.

6.9. Solvability
April 25, 2025 Recall the following from MATH 741:

Definition 6.14
Let G be a finite group. G is solvable if G D G1 D G2 D · · · D Gk = {e} such that
Gi/Gi+1 is abelain for all i. In other words, G is successively constructed from abelian
groups.

Fact 6.48. G is solvable ⇐⇒ H is solvable and G/H is solvable.

Example 6.20 – Let F be a field, a ∈ F, and n ∈ N such that char(F) - n. Let E be the
splitting field of xn − a. Then Gal(E/F) is solvable.

On the field theoretic side:

Definition 6.15
Let E/F be a finite field extension. E/F is solvable if we have a tower

E ⊆ K = Km

...

K2

K1

F

such that each Ki/Ki−1 is a splitting field of xk−a for some k and a ∈ Ki−1 (dependent
on i) (and char(F) - k).

In other words, we want every element of E to be expressed using +,−, /, ·, and k
√ (possibly

nested).
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Corollary 6.49
If E/F is solvable, then Gal(E/F) is solvable.

Proof (sketch). Gal(E/F) is a quotient of Gal(K/F), which is an extension of
Gal(Ki/Ki−1)’s.

Exercise 6.5. Suppose E/F is a Galois extension of prime degree p, and σ : E → E is a non-
trivial element of its Galois group. Suppose that σ is diagonalizable (that is, there exists a
basis of E as a vector space over F such that σ is diagonal in this basis). Show that E is the
splitting field of a polynomial xp − a for some a ∈ F.

Proposition 6.50
Conversely, if Gal(E/F) is solvable, then E/F is solvable (assuming char(F) - [E : F]).

Proof (sketch).

1. Replace Fwith F(ζ), where ζ is a primitive nth root of unity where n = [E : F].

E(ζ)

E F(ζ)

F

Since Gal(E/F) is solvable and Gal(E(ζ)/E) is abelian, Gal(E(ζ)/F) is solvable.
This implies Gal(E(ζ)/F(ζ)) is solvable. Therefore, it suffices to show E(ζ)/F(ζ) is
solvable.

2. By induction, we may assume Gal(E/F) ∼= Z/q for some prime q.

3. We claim the following:

Claim 6.1. E = F( q
√
a) for some a ∈ E.

To prove this claim, let σ ∈ Gal(E/F) generate the Galois group. Since σq = idE,
and σ may be viewed as an F-linear map from E → E, σ is diagonalizable. By
Exercise 6.5, E is a splitting field of some xq − a ∈ F[x].

6.9.1. Solvability of algebraic equations

Let F be a field, and f ∈ F[x] be separable. Let E be the splitting field of f over F. For simplicity,
we will define

Gf := Gal(E/F).

We just proved that E/F is solvable ⇐⇒ Gf is solvable. Suppose f(x) = (x−α1) · · · (x−αn).
Since automorphisms of Gf is uniquely determined by the image of each αi, which is some
element in {α1, . . . ,αn}, there is an inclusion

Gf ↪→ Sn.
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Gf acts transitively on Sn ⇐⇒ f is irreducible.
f (that is, E/F) is solvable ⇐⇒ Gf is solvable. It now seems more realistic that some

quintics (and above) will be not solvable, since S5,S6, . . . are not solvable (because An E Sn
and An is simple for n ≥ 5). We’ll show that there are actually polynomials fwith Gf ∼= S5.

Example 6.21 – We’ll construct an f ∈ Q[x] with Gf ∼= S5.

Lemma 6.51
IfG ≤ Sn such that (1)G acts transitively on {1, . . . ,n} (2)G contains a transposition,
then G = Sn. 1

1Lecture correction: this only holds if n is prime. In general, instead of G acting transitively, you need
G to be a primitive permutation group.

Therefore, we need f to be irreducible (e.g. by Eisenstein), and have 3 real roots, and 2
complex roots, so the complex conjugation automorphism transposes the two complex
roots. Now look up what polynomials work.

6.9.2. General formula for roots

April 28, 2025 Consider a “general polynomial:”

xn + an−1x
n−1 + · · ·a0,

where a0, . . . ,an−1 are variables, so we view it as a polynomial in F(a0, . . . ,an−1). If x1, . . . , xn
are the roots of this polynomial, then (x−x1) · · · (x−xn) expands to xn+an−1x

n−1+ · · ·a0.
Therefore, the extension F(a0, . . . ,an−1, x1, . . . , xn)/F(a0, . . . ,an−1) satisfies

F(a0, . . . ,an−1, x1, . . . , xn) = F(x1, . . . , xn).

On the other hand, we can view F(a0, . . . ,an−1) ⊆ F(x1, . . . , xn) as the field

F(σ1, . . . ,σn),

where σi are the elementary symmetric polynomials:

σ1 = x1 + · · ·+ xn
σ2 = x21 + x1x2 + · · ·+ x2n
...

σn = x1 · · · xn,

which follows by expanding (x− x1) · · · (x− xn). Consider the actions of Sn on F(x1, . . . , xn)
by permuting the elements xi accordingly. By the theory of symmetric functions, the fixed
elements of F(x1, . . . , xn) under the symmetric group Sn are precisely a0, . . . ,an−1:

F(x1, . . . , xn)Sn = F(an−1, . . . ,a0).

By Artin’s theorem (6.36),

Sn ∼= Gal(F(x1, . . . , xn)/F(a0, . . . ,an−1)).

This also suggests to us that finding a general formula for the xi’s would mean dealing with
an extension with Galois group Sn.
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6.10. Finite fields
We deduce what finite fields could exist: let F be a field with #F <∞.

• Then char(F) = p, so F ⊇ Fp.

• [F : Fp] <∞, so the order of Fmust be a prime power: #F = p[F:Fp] =: q.

• From group theory, |F×| = q− 1, which implies (from Fermat’s little theorem), for all
α ∈ F×, αq−1 = 1. Equivalently, all α ∈ F are roots of xq − x.

Therefore, F, defined as the splitting field of xq− x over Fp, is unique (up to isomorphism).
Conversely, given q = pn, take Fp ⊆ Fp.

Claim 6.2. The set {α : αq = α} ⊆ Fp is a field of size q.

Proof. We use the special property of characteristic p: (α± β)p = αp ± βp. Otherwise,
showing this is a field is clear. Since (xq− x) ′ = −1, which is coprime with xq− x, xq− x
is separable and has q roots. �

Hence, for every q = pn, there exists a unique (up to isomorphism) field with q elements,
which we denote Fq, satisfying Fp ⊆ Fq ⊆ Fp.

Question. What does the poset {Fq : q = pn} look like (ordered by inclusions Fq1 ↪→ Fq2 )?
Some necessary conditions:

• char(Fq1) = char(Fq2), so let q1 = pn, q2 = pm.

• If [Fq2 : Fq1 ] = k, then q2 = pm = pnk = pk1 .

We claim these conditions are sufficient. Indeed, if α ∈ Fp satisfies xp
n

= x, then it also
satisfies xp

nk
= x.

Example 6.22 – The proper subfields of Fp6 are
{

Fp, Fp2 , Fp3 , Fp6

}
with inclusions as

follows:
Fp6

Fp2 Fp3

Fp

Suppose we wanted to find |Fp6 − (Fp3 ∪ Fp2)|. Then it has precisely

p6 − p3 − p2 + p

elements by inclusion-exclusion. This gives the number of primitive elements of Fp6/Fp.
Similarly, we can calculate the number of elements of degree 1, 2, and 3: p, p2 − p, and
p3 − p elements respectively.

Moreover, the p6 − p3 − p2 + p primitive elements come in groups of 6, where each
group has an element and its 5 other conjugates. In fact, p

6−p3−p2+p
6 is the number of

irreducible polynomials of degree 6.
A similar exclusion-exclusion applies to the polynomials xp

n
− x associated with the

98



6.10 Finite fields Pramana

intermediate fields Fpn :

∏
p∈Fp[x]
degp=6

p irreducible, monic

p(x) =
(xp

6
− x)(xp − x)

(xp
3
− x)(xp

2
− x)

.

April 30, 2025 Yesterday’s discussion was the same as looking at the Frobenius homomorphism

Fr : Fp → Fp

x 7→ xp.

For any q = pn, define Fq :=
{
x ∈ Fp : Frn(x) = x

}
. This embeds all finite fields in Fp and

all finite subfields of Fp are Fpn for n ≥ 1.

Corollary 6.52

Fp =
⋃
n≥1

Fpn .

6.10.1. Galois theory perspective

Fpn/Fp is a finite Galois extension (indeed, it is the splitting field of xp
n
− x (or, more eco-

nomically, any of its irreducible degree n factors)).

Proposition 6.53

Gal(Fpn/Fp) = 〈Fr〉 =
{

id, Fr, . . . , Frn−1
}

.It would be more
accurate to write

Fr|Fpn
here.

Proof (sketch).

• It is clear that these are all automorphisms.

• In fact, these are all distinct, because if Frk = id for some k < n, then xp
k
= x for

all x ∈ Fpn , which contradicts the supposed size of Fpn .

• Therefore, these are all automorphisms, since [Fpn : Fp] = n.

Form | n, Galois theory tells us that

(Fpn)
Frm = Fpm .

Remark 6.54. We can write Fpn as the quotient Fp[x]/(f), where f ∈ Fp[x] is irreducible. This
is analogous to quotienting Z by the ideal (`), where ` is prime to get Z/`. One could argue
that the former is easier to work with, since, as a group, Fpn = Fp[x]/(f(x)) ∼= Fnp .

Example 6.23 (RSA) – RSA encryption uses the following facts:

1. We can find large primes:

a) The prime number theorem gives us the probability that a number ≤ N is
prime.
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b) We have fast primality tests.

2. By the Chinese remainder theorem,

Z/pq ∼= Z/p× Z/q.

3. We have no fast factorization algorithm (i.e., to get from pq to p,q).

Here are the analogous questions for finite fields. To solve the questions, it’s helpful
to note the Galois theory structure (that is, the Frobenius map) Fix a prime p.

1. We want to find large degree irreducibles f(x) ∈ Fp[x].

a) Question. What is the probability a random f is irreducible?

b) Question (harder). Are there fast “irreducibility tests”?

2. By the Chinese remainder theorem, if f,g are distinct irreducibles,

Fp[x]/(fg) ∼= Fp[x]/(f)× Fp[x]/(g).

3. Question. Is there a fast factorization algorithm (i.e., to get from f(x)g(x) to
f(x),g(x))?

Spoiler: there are fast factorization algorithms for polynomials over Fp[x], so working over
finite fields is, indeed, “nicer” than over Z/` in this case.

Last time (6.22) we showed that there exist degree 6 irreducible polynomials in Fp[x], essen-
tially by counting the size of Fp6 and comparing it to the size of Fp3 ∪ Fp2 ∪ Fp. In general,
there exists a degree n irreducible polynomial because

Fpn ⊃
⋃
m|n
m<n

Fpm .

It follows that for all n, there exists an element α ∈ Fp such that Fp(α) = Fpn . This statement
holds more generally.

Theorem 6.55 (Primitive element theorem)
Any finite separable extension E/F is simple: E = F(α) for some algebraic α/F.

Notice that we have gone very far without invoking this theorem.

6.11. Infinite Galois theory
Suppose K ⊇ F is an infinite Galois extension. In other words, K is the splitting field of (an
infinite) collection of separable polynomials.

Example 6.24 – Q/Q is an infinite Galois extension, since Q is the splitting field of all
polynomials in Q[x].

Hence, we can consider K as the union of finite Galois extensions, where each is the splitting
field of finitely many separable polynomials. The Galois groups are not completely unrelated.
Indeed, consider

Q(
3
√
2,
√
−3) ⊇ Q(

√
−3) ⊇ Q.
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Then
Gal(Q(

3
√
2,
√
−3)/Q) ∼= S3,

and more importantly,
Gal(Q(

√
−3)/Q) ∼= S3/A3 ∼= Z/2.

More generally,

Proposition 6.56
If E1,E2 are Galois extensions/F satisfying E1 ⊆ E2, then Gal(E1/F) is a quotient of
Gal(E2/F) with quotient map

Gal(E2/F) � Gal(E1/F),

σ 7→ σ
∣∣
E1

.

May 2, 2025 If intermediate fields are unrelated, then we can construct the field E1E2 containing both.
This extension is Galois because

Gal(K/E1E2) = Gal(K/E1)∩ Gal(K/E2),

and the latter Galois groups are normal.

Proposition 6.57
Let Gal(K/F) := AutF(K). Then

Gal(K/F) = lim←−
E

Gal(E/F),

where lim←− is the projective limit/inverse limit/limit over all finite Galois extensions E/F.

Example 6.25 – Consider Fp/Fp. The only finite extension intermediate fields are Fpn ,

and Gal(Fpn/Fp) =
{

id, Fr, . . . , Frn−1
}

∼= Z/n. If m | n, we have a map (in fact, a
quotient map)

Z/n→ Z/m.

Then

Gal(Fp/Fp) = lim←−
n

Z/n = {(αn : αn ∈ Z/n) : m | n =⇒ αn ≡ αm (mod m)} .

Note that lim←−nZ/n also contains the information of the quotient maps.
We’ll now try to understand the group lim←−nZ/n is. If we fix a prime p, then lim←−kZ/pk

consists of infinite tuples (· · · ,a2,a1,a0) such that if n ≥ m, an ≡ am (mod pm). This
is precisely the definition of the p-adic numbers, Zp. The Chinese remainder theorem
essentially gives us that

Ẑ =
∏
p prime

Zp.

To add more structure, we can define a topology on lim←−EGal(E/F) as follows: let (σE) =

σ ∈ lim←−EGal(E/F). Fix some finite Galois extension E/F. Then define open sets as{
(τE) ∈ lim←−

E

Gal(E/F) : σE = τE

}
.
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Theorem 6.58 (Fundamental theorem of Galois theory for infinite extensions)
Let K/F be a Galois extension.

1. (Finite extensions) We have an order-reversing bijection intermediate fields E
with [E : F] <∞
K ⊇ E ⊇ F

 ←→ {
open subgroups
H ≤ Gal(K/F)

}

E 7→ Gal(K/E) = {σ ∈ Gal(K/F) : σ|E = idE}

KH := {α ∈ K : H · α = α} ← [ H

2. (Infinite extensions) We have an order-reversing bijection intermediate fields E
with [E : F] infinite

K ⊇ E ⊇ F

 ←→ {
closed subgroups
H ≤ Gal(K/F)

}

E 7→ Gal(K/E) = {σ ∈ Gal(K/F) : σ|E = idE}

KH := {α ∈ K : H · α = α} ← [ H

The punchline is that understanding separable algebraic extensions of F is the same as un-
derstanding the group

Gal(F/F),

(or the separable closure if F is not perfect).
One can think of number theory as trying to understand the absolute Galois group Gal(Q/Q).
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