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The Upper-Half Plane

We define the upper-half plane of the complex numbers as the subset

H={x+iy:y>0}CC.

H

Figure: The upper half plane in C.
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Working With Matrices

Let GL2(R) is the set of invertible 2 x 2 matrices with entries in R. We
can move around points on H with GL,(RR) by the following formula:

a b _az+b
c dl T Z+d
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Working With Matrices

Let GL2(R) is the set of invertible 2 x 2 matrices with entries in R. We
can move around points on H with GL,(RR) by the following formula:

a b _az+b
c dl T Z+d

This formula is a little random, but it's the basis for the theory of modular
forms.
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Definition

A group is a set G together with a binary operation * such that

@ (associativity) (a* b)xc = ax* (b= c),

Pramana Saldin (Math Club) November 8, 2024 5/34



Definition

A group is a set G together with a binary operation * such that
@ (associativity) (a* b)xc = ax* (b= c),
@ (identity) There exists e € G such that axe=exa = a.

Pramana Saldin (Math Club) November 8, 2024 5/34



Definition

A group is a set G together with a binary operation * such that
@ (associativity) (a* b)xc = ax* (b= c),
@ (identity) There exists e € G such that axe=exa = a.

© (inverses) There exists a~1 € G such that a lxa=axal=e
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Definition

A group is a set G together with a binary operation * such that
@ (associativity) (a* b)xc = ax* (b= c),
@ (identity) There exists e € G such that axe=exa = a.

© (inverses) There exists a~1 € G such that a lxa=axal=e

GLy(R) forms a group under matrix multiplication.
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Definition

A group is a set G together with a binary operation * such that
@ (associativity) (a* b)xc = ax* (b= c),
@ (identity) There exists e € G such that axe=exa = a.

© (inverses) There exists a~1 € G such that a lxa=axal=e

GLy(R) forms a group under matrix multiplication. For example, in linear

algebra we learn that the identity matrix [ = [(1) (IJ] satisfies

Al =1A= A
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Definition

A group action G ~ X is how a group “moves around” things in X while
playing nicely with the group structure.
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Definition

A group action G ~ X is how a group “moves around” things in X while
playing nicely with the group structure. More precisely,

Q@ e -x=xforall x € X.
@ a (b-x)=(ab)-x forall x € X.
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Definition

A group action G ~ X is how a group “moves around” things in X while
playing nicely with the group structure. More precisely,

Q@ e -x=xforall x € X.
@ a (b-x)=(ab)-x forall x € X.

Example (Important)

Is a group action GLp(R) ~ H!
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SL»(Z)

Define the special linear group as

SLy(Z) = {[i S} ra,b,c,d € Z, det = 1}.

Pramana Saldin (Math Club) November 8, 2024 7/34



SL»(Z)

Define the special linear group as

SLy(Z) = {[i S} ra,b,c,d € Z, det = 1}.

If you are suspicious about inverses,

-1

a b 1 d —b

[c d] ~ ad — bc [—c a ] € SL2(2).
———

=1
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SL»(Z)

Define the special linear group as

SLy(Z) = {[i (ﬂ ra,b,c,d € Z, det = 1}.

If you are suspicious about inverses,

-1
a b 1 d —b
[c d] ~ ad — bc [—c a ] € SL2(2).
———

=1

This is a much smaller subset of GLy(R), but we can still look at how it
acts on H (with the formula before).
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Generators of SLy(Z)

Idea: Get a "basis” for SL»(Z).
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https://roywilliams.github.io/play/js/sl2z/

Generators of SLy(Z)

Idea: Get a "basis” for SL»(Z).

The matrices

generate SL,(Z).
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https://roywilliams.github.io/play/js/sl2z/

Generators of SLy(Z)

Idea: Get a "basis” for SL»(Z).

The matrices

generate SL,(Z).

>0 1 0z -1 1
z+ z —
0z+1 b T 750 z
November 8, 2024 8/34
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https://roywilliams.github.io/play/js/sl2z/

Generators of SLy(Z)

Idea: Get a "basis” for SL»(Z).

The matrices

generate SL,(Z).

> 1 0z —1 1
zZ+ z —
2= 0741 2T h T 750 e

It's harder for me to explain in words what these matrices represent.
Orbits of z € H.
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https://roywilliams.github.io/play/js/sl2z/

Notice that one circle always remained in each of the regions.
What if we took the structure of H, but simplified it by the group SL2(Z)?
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Notice that one circle always remained in each of the regions.
What if we took the structure of H, but simplified it by the group SL2(Z)?

z is “the same” as Z' if there is a matrix taking z to Z'.
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Notice that one circle always remained in each of the regions.
What if we took the structure of H, but simplified it by the group SL2(Z)?

z is “the same” as Z' if there is a matrix taking z to Z'.

What I've just described is quotienting H by SLy(Z), which we will
denote H/ SL»(Z).
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The fundamental domain

We can now just look at one of these regions:

Fi

-1 0 1

Figure: The upper-half plane, quotiented by SLy(Z). [Stein, Shakarchi Complex
Analysis]
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The fundamental domain

We can now just look at one of these regions:

Fi

-1 0 1
Figure: The upper-half plane, quotiented by SLy(Z). [Stein, Shakarchi Complex
Analysis]

We call F the fundamental domain.
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[l. Modular Forms
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What are modular forms?

A question we may ask is what “nice” complex functions satisfy
az+b
f =f
(cz + d) (2)

for all [i Z} € SL»(Z) and z € H? These are modular functions.
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These are hard to find; instead we can look at modular forms.

Pramana Saldin (Math Club) November 8, 2024 12/34



What are modular forms?

A question we may ask is what “nice” complex functions satisfy
az+b
f =f
(cz + d) (2)

for all i 2} € SL»(Z) and z € H? These are modular functions.
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What are modular forms?

A question we may ask is what “nice” complex functions satisfy
az+b
f =f
(cz + d) (2)

for all i Z} € SL»(Z) and z € H? These are modular functions.

These are hard to find; instead we can look at modular forms.
Definition

Let k € Z. A modular form of weight k for SL»(Z) is a function
f: H — C such that

@ f is holomorphic,
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for all i Z} € SL»(Z) and z € H? These are modular functions.

These are hard to find; instead we can look at modular forms.
Definition
Let k € Z. A modular form of weight k for SL»(Z) is a function
f: H — C such that

@ f is holomorphic,

@ (modularity condition) f (%‘;) = (cz + d)*f(z) for all
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What are modular forms?

A question we may ask is what “nice” complex functions satisfy
az+b
f =f
(cz + d) (2)

for all i Z} € SL»(Z) and z € H? These are modular functions.

These are hard to find; instead we can look at modular forms.
Definition

Let k € Z. A modular form of weight k for SL»(Z) is a function
f: H — C such that

@ f is holomorphic,

@ (modularity condition) f (%‘;) = (cz + d)*f(z) for all

© f(z) is bounded as Imz — oo.

Pramana Saldin (Math Club) Modular Forms and Some Nice

November 8, 2024 12/34



Fourier Things

The matrix T = [1

0 1] gives us a periodic looking equation...

f(z+1) = f(z2).
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Fourier Things

The matrix T = [(1) ﬂ gives us a periodic looking equation...

f(z+1) = f(z2).

Question: Is there a nice way to write periodic functions? Yes. Fourier
series!

Let q(z) = e*™2. We can express any modular form as the Fourier series

f(q) = f(a(2)) Zanq(z Zanq

This is called the g-expansion of f.
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Fourier Things

The matrix T = [(1) ﬂ gives us a periodic looking equation...

f(z+1) = f(z2).

Question: Is there a nice way to write periodic functions? Yes. Fourier
series!

Let q(z) = e*™2. We can express any modular form as the Fourier series

f(q) = f(a(2)) Zanq(z Zanq

This is called the g-expansion of f.

Question: What does g = 0 correspond to?
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Vector Spaces

Notice that if f, g are a modular forms of weight k, so are

af(2), f(z) + g(2).
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Vector Spaces

Notice that if f, g are a modular forms of weight k, so are

af(2), f(z) + g(2).

So the set of all modular forms of weight k, M, is a C-vector space!
If f € Mg and g € My, then fg € Mk+g.
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Vector Spaces

Notice that if f, g are a modular forms of weight k, so are
af(2), f(z) + g(2).

So the set of all modular forms of weight k, M, is a C-vector space!
If f € Mg and g € My, then fg € Mk+g.

So M = D>o Mk has a graded module structure. \
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Finite-dimensionality

My is finite-dimensional for all k. In fact,

[y

[%] +1 ifkeven k#2 (mod 12),

dim My = § [&] if k even, k=2 (mod 12),

[y

0 otherwise.
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Some quick examples of modular forms

Definition

For k > 4 even, define the weight k Eisenstein series as

1
Gk(z) = Z m

(m,n)ez?
(m,n)#(0,0)
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Some quick examples of modular forms

Definition

For k > 4 even, define the weight k Eisenstein series as

1
Gk(z) = Z m

(m,n)ez?
(m,n)#(0,0)

Proposition

Gy is a modular form of weight k.
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Some quick examples of modular forms

Definition

For k > 4 even, define the weight k Eisenstein series as

1
Gk(z) = Z m

(m,n)ez?
(m,n)#(0,0)

Proposition

Gy is a modular form of weight k.

Proving G is holomorphic and Gi(z) bounded as Im z — oo are more
technical...
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Some quick examples of modular forms

Definition
For k > 4 even, define the weight k Eisenstein series as
G(z) = ). S —
A (mz + n)k’
(m,n)ez?
(m,n)#(0,0)

Proposition

Gy is a modular form of weight k.

Proving G is holomorphic and Gi(z) bounded as Im z — oo are more
technical...
For the modularity condition, you just need to prove it for the matrices

S = [(1) _01] and T = B ﬂ since they generate SLy(Z) (exercise).
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Gi has g-expansion

Gk(q) = 2¢(k) — g(other terms...).
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Gi has g-expansion

Gk(q) = 2¢(k) — g(other terms...).

Definition
The normalized Eisenstein series of weight k is
Gk(q)

The constant term of Ej is always 1.
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Gi has g-expansion

Gk(q) = 2¢(k) — g(other terms...).

Definition
The normalized Eisenstein series of weight k is
Gk(q)

The constant term of Ej is always 1.

Upshot: Sums and products of these Ei's form a basis for any My!
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Since E4(z)? € Mg, and dim(Mg) = 1,
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Since E4(z)? € Mg, and dim(Mg) = 1,

E4(2)? = CEg(2).
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Since E4(z)? € Mg, and dim(Mg) = 1,

E4(2)? = CEg(2).

(1 + 240q + 2160g° + 6720g° + - - - )?
= C(1 + 480q + 61920¢° + 1050240q° + - - - )
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Since E4(z)? € Mg, and dim(Mg) = 1,

E4(2)? = CEg(2).

(1 + 240q + 2160g° + 6720g° + - - - )?
= C(1 + 480q + 61920¢° + 1050240q° + - - - )

Looking at g =0, C = 1.
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lIl. Finally, some applications!
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Translation surfaces

Definition

A translation surface is a polygon with pairs of opposite sides identified.
We'll consider two polygons the same up to scaling and rotation.
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Translation surfaces

Definition

A translation surface is a polygon with pairs of opposite sides identified.
We'll consider two polygons the same up to scaling and rotation.

[l
I
Figure: A translation surface.

Pramana Saldin (Math Club) November 8, 2024 20/34



Translation surfaces

Definition

A translation surface is a polygon with pairs of opposite sides identified.
We'll consider two polygons the same up to scaling and rotation.

[l
I
Figure: A translation surface. What surface is this?

Pramana Saldin (Math Club) November 8, 2024 20/34



Parallelogram torus <+ C

Similarly, we can create a torus for any parallelogram.
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Parallelogram torus <+ C

Similarly, we can create a torus for any parallelogram. With scaling and
rotation, we can associate any z € H to a torus.

:ED

1

Figure: Associating a complex number H to every torus.
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Spaces of translation surfaces

Let’s see what happens when we apply T = [(1) ﬂ and S = [(1) _01} to

a square torus.
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Spaces of translation surfaces

Let’s see what happens when we apply T = [(1) ﬂ and S = [(1) _01} to

a square torus. For T:

Figure: The action of T.
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Spaces of translation surfaces

Let’s see what happens when we apply T = [(1) ﬂ and S = [(1) _01} to

a square torus. For T:

Figure: The action of T.

Since —% = i, the torus doesn’t change under S.
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Upshot: The space of all parallelogram translation surfaces is invariant
under SL(Z)!
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Upshot: The space of all parallelogram translation surfaces is invariant
under SLp(Z)! Therefore (with some more work) can identify this space
with the fundamental domain:

-1 0 1

Figure: A translation surface associated to each point in F.
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Upshot: The space of all parallelogram translation surfaces is invariant
under SLp(Z)! Therefore (with some more work) can identify this space
with the fundamental domain:

-1 0 1

Figure: A translation surface associated to each point in F.

This is called the stratum #(2).
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Jacobi's four squares theorem

Theorem (Lagrange)

Every non-negative integer n is a sum of four squares.

Pramana Saldin (Math Club) November 8, 2024 24 /34



Jacobi’s four squares theorem

Theorem (Lagrange)

Every non-negative integer n is a sum of four squares.

Theorem (Jacobi, 1834)

In fact, the number of ways to write an integer n as the sum of four

squares is
8o1(n n odd,
ra(n) = (m)
2401(noqq) N even,

where o1(n) is the sum of the divisors of n and n.qq is the odd integer so
that n = 2k . Nodd -
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We can prove Jacobi's theorem with modular forms!
Definition

Let k € Z. A modular form of weight k for SL»(Z) is a function
f: H — C such that

@ f is holomorphic,

2} f(@;ig) = (cz + d)¥f(z) for all [i ﬂ € SLy(2),

@ f(z) is bounded as Im z — oc.
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We can prove Jacobi's theorem with modular forms!

Definition

Let k € Z. A modular form of weight k for [ C SL(Z) is a function
f: H — C such that

@ f is holomorphic,
Qf (ijig) = (cz + d)*f(z) for all [

@ f(z) is bounded as Imz — oc.

a
c d

The vector space of all modular forms of weight k for I is denoted M (I).

v
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We can prove Jacobi’'s theorem with modular forms!

@ We consider the function

0(2) — Ze2ﬁlm27':1+2q+2q4+2q9+
meZ

The coefficient of g counts the number of ways to write k = a2 for
integers a.
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We can prove Jacobi’'s theorem with modular forms!

@ We consider the function

0(2) — Ze2ﬁim27':1+2q+2q4+2q9+...
meZ

The coefficient of g counts the number of ways to write k = a2 for
integers a.

@ It turns out
0(z)* =1+8q+24q> +---

is a modular form of weight 2 on 'g(4) C SL»(Z). Moreover, the
coefficient of g counts the number of ways to add four squares to k.
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We can prove Jacobi’'s theorem with modular forms!

@ We consider the function

0(2) — Ze2ﬁim27':1+2q+2q4+2q9+...
meZ

The coefficient of g counts the number of ways to write k = a2 for
integers a.

@ It turns out
0(z)* =1+8q+24q> +---
is a modular form of weight 2 on 'g(4) C SL»(Z). Moreover, the
coefficient of g counts the number of ways to add four squares to k.

@ Problem: it's hard to expand this power series and get the values.
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We can prove Jacobi’'s theorem with modular forms!

@ We consider the function

0(2) — ZeZWisz:1+2q+2q4+2q9+...
meZ

The coefficient of g counts the number of ways to write k = a2 for
integers a.

@ It turns out
0(z)* =1+8q+24q> +---
is a modular form of weight 2 on 'g(4) C SL»(Z). Moreover, the
coefficient of g counts the number of ways to add four squares to k.
@ Problem: it's hard to expand this power series and get the values.

@ A similar result to before shows that M»(I'p(4)) is finite dimensional,
so we instead use a basis to determine the coefficients.
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0(z)* =1+8q+24q> + - --
@ So take basis polynomials for M»(o(4)):

o0
f]_(Z) =1 +24ZUI(”odd)qn =1 —|—24q_|_
n=1

f(z )—1—1—24201 Noad)q>" = 1+ 24¢° +
n=1
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0(z)* =1+8q+24q> + - --
@ So take basis polynomials for M»(o(4)):

o0
f]_(Z) =1 +24ZUI(”odd)qn =1 —|—24q_|_
n=1

fa(z )—1+24201 Noda)q”" =1+ 24¢° + -
n=1

@ Looking at the coefficients, we find

0(z)* = %ﬂ(z) + %@(z).
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0(z)* =1+8q+24q> + - --
@ So take basis polynomials for M»(o(4)):

o0
f]_(Z) =1 +24ZUI(”odd)qn =1 —|—24q_|_
n=1

fa(z )—1+24201 Noda)q”" =1+ 24¢° + -
n=1

@ Looking at the coefficients, we find

0(z)* = %ﬂ(z) + %@(z).

@ But f; and £ have a simple form, which gives us the formula.
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Some properties of (

Definition

The Riemann zeta function is defined? as

00
1 1 1 1
C(S): F:F+_+3s+

n=1

?For all s € C with Res > 1. Also, defined for all s € C by analytic continuation.

Pramana Saldin (Math Club) November 8, 2024 27 /34



Some properties of (

Definition

The Riemann zeta function is defined? as

00
1 1 1 1
C(S): F:F+_+3s+

n=1

?For all s € C with Res > 1. Also, defined for all s € C by analytic continuation.

\

Proposition (Basel Problem)

=1 1 1 1 2
n=1

A\
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Some properties of (

Definition

The Riemann zeta function is defined? as

00
1 1 1 1
C(S): F:F+_+3s+

n=1

?For all s € C with Res > 1. Also, defined for all s € C by analytic continuation.

\

Proposition (Basel Problem)

=1 1 1 1 2
n=1

A\

What about other values of {(s)?
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Recall:

Proposition
1
Gk(q) = Z (mz )k 2¢(k) — q(other terms...).
(m,n)ezZ?
(m,n)#(0,0)
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Recall:

Proposition

1
Gk(q) = Z (mz—l—n)k
(m,n)ezZ?
(m,n)#(0,0)

= 2((k) — q(other terms...).

1
Zz—l—n

nezZ

= m - cot(mz)
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Recall:

Proposition

1
Gk(q) = Z (mz—l—n)k
(m,n)ezZ?
(m,n)#(0,0)

= 2((k) — q(other terms...).

1
Zz—l—n

nezZ

= m - cot(mz)

] eZTriz + 1 ] 2
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Recall:

Proposition

1
Gk(q) = Z (mz—l—n)k
(m,n)ezZ?
(m,n)#(0,0)

= 2((k) — q(other terms...).

1
Zz—l—n

neZ

= m - cot(mz)

] eZTriz + 1 ] 2

o
=it — 27riz q".
n=0
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Recall:

Proposition
1
Gk(q) = Z m = 2((k) — q(other terms...).
(m,n)ez?
(m,n)#(0,0)

Proof (continued).

Differentiating k times, we get

1 27r/
Z(z—i—n)k k Z la

neZ
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Recall:

Proposition
1
Gk(q) = Z (mz ) 2¢(k) — qg(other terms...).
(m,n)eZ?
(m,n)#(0,0)

Proof (continued).
So,

1 1
Gk(Z): Z ﬁ—{_ Z Zm

n€Z\{0} meZ\{0} n€Z
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Recall:

Proposition
1
Gk(q) = Z (mz ) 2¢(k) — qg(other terms...).
(m,n)eZ?
(m,n)#(0,0)

Proof (continued).
So,

1 1
Gk(Z): Z ﬁ—{_ Z Zm

n€Z\{0} meZ\{0} n€Z

=20(k)+ Y Z(mz}i—n)k

meZ\{0} nEZ
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Recall:

Proposition
1
Gk(q) = Z (mz ) 2¢(k) — qg(other terms...).
(m,n)eZ?
(m,n)#(0,0)

Proof (continued).
So,

1 1
Gk(Z): Z ﬁ—{_ Z Zm

n€Z\{0} meZ\{0} n€Z

=20(k)+ Y Z(mz}i—n)k

meZ\{0} nEZ

_ = mi)* <~ k1
2((/{)—1—22 (k_l)!Zn ql.
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Recall:

Proposition

1
Gk(q) = Z m = 2C(k) — q(other terms...).
(m,n)e7?
(m,n)#(0,0)

Proof (continued).

Finally,
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Recall:

Proposition
1
Gk(q) = Z (mz )k 2¢(k) — q(other terms...).
(m,n)eZ?
(m,n)#(0,0)

Proof (continued).

Finally,
k
Gk(z) = 2¢(k) + k 27r1/))l Zan LGP
" m=1n=1
2 k
= 2¢(k) k ﬂll))| szk ‘g’
C =1 d|e
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Recall:

Proposition
1
Gk(q) = Z (mz )k 2¢(k) — q(other terms...).
(m,n)eZ?
(m,n)#(0,0)

Proof (continued).
Finally,
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If k >0 and f € My has q expansion )" ; anq" with a, € Q forn > 1,
then ag € Q.
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If k >0 and f € My has q expansion )" ; anq" with a, € Q forn > 1,
then ag € Q.

.

Partially technical... (axiom of choice/field theory). Uses the fact that Ea
and Eg form a basis for M. O

v
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Rationality of (k)

Now notice that

Gk(2) B ¢(k) s .
2(27ri)kk/(k NI G T s T ;lak_l(")q :
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Rationality of (k)

Now notice that

Gk(2) N ¢(K) o
2(27ri)kk/(k NI G T s T Z:IUk—l(n)q

. . (k)
So it satisfies the theorem, and (CORC= Q.
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Rationality of (k)

Now notice that

Gk(z) _ C((k) — 1)| + Zak—l(n)q

202mi)k/(k — 1)1 (2mi)*/(k

. . (k)
So it satisfies the theorem, and (CORC= Q.

C(k) is a rational multiple of ™ for k > 8 even.

Pramana Saldin (Math Club) November 8, 2024 33/34



Rationality of (k)

Now notice that

Gk(z) _ C((k) — 1)| + Zak—l(n)q

202mi)k/(k — 1)1 (2mi)*/(k

. . (k)
So it satisfies the theorem, and (CORC= Q.

C(k) is a rational multiple of ™ for k > 8 even.

8

v
C(8)_9450

7r10
10) =
¢(10) 93555

691712
12)= ——
<(12) 638512875
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Thank you!
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